
Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Control Engineering

Subspace Identification Methods

Technical Report

Ing. Pavel Trnka

Supervisor: Prof. Ing. Vladimı́r Havlena, CSc.

Prague, September 2005



Acknowledgement

First, I would like to thank to my supervisor Vladimı́r Havlena for his very good

guidance, his support and for sharing his ideas with me.

I would like to thank to my friends for letting me spend pleasant time with them

far away from the school and science, giving me new energy for my further work.

And finally I have to thank to my parents for their continuous support in anything

I do.

II



Abstract

This technical report shows the recent advances in Subspace Identification Methods

(4SID) and describes the reasons making these methods attractive to the industry.

The 4SID methods are used for the identification of the linear time-invariant models

in a state space form from the input/output data. On the contrary to the other

methods, they are based on the different principles, like the geometrical projections

and numerical linear algebra. Therefore the stress is laid on the interpretations

of these methods in the well known frameworks of Kalman filter, Prediction error

minimization and Instrumental variable methods. Recently proposed 4SID algo-

rithms, improvements and open problems are discussed and finally a new available

research direction in subspace identification is presented. The new idea would allow

to incorporate prior information into 4SID while recursifying the algorithm.
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Chapter 1

Introduction

”The results of realization theory and the application of subspace identi-

fication algorithms form an example of what has been called the ‘unrea-

sonable effectiveness’ of mathematics.”

Jan H. van Schuppen, Vrije University, Amsterdam

Our research deals with relatively new methods in linear system identification, which

are generally entitled Subspace Identification Methods or more accurately 4SID

methods (Subspace State Space Systems IDentification). They are used for iden-

tification of LTI state space models directly from the input/output data. 4SID

methods are an alternative to the regression methods like ARX or ARMAX. How-

ever, they are based on a very different approach of the geometric projections and

linear algebra.

The basic ideas of these methods were developed about 20 years ago and they are

quite well accepted in the control engineering community, however the applications

of these methods in the systems identification are still rather exceptional, which

is mainly due to their complex theoretical backgrounds, until recently problematic

recursification and the problems with the closed-loop identification.

Up-to-date algorithms of 4SID methods are competing Prediction Error Methods

(PEM) in their performance and have shown several good properties, which make

them favorable candidate for the industrial applications.

1.1 Properties of 4SID methods

The following list shows the most important positive and negative properties of 4SID

methods.

Positive properties

MIMO systems identification. The complexity of the identification for large

MIMO (Multiple Inputs Multiple Outputs) systems is the same as for SISO

1



2 CHAPTER 1. INTRODUCTION

(Single Input Single Output) systems. There is no need for an extensive MIMO

structure parametrization, which is a very appealing property.

Numerical robustness. 4SID methods can be implemented with QR and SVD

factorizations, which have well known properties and very good numerical

robustness.

Few user parameters. In fact there is only one parameter and that is the system

order. There is no need for the complex parametrization even for MIMO

systems, because 4SID methods are identifying a state space model. Therefore

4SID methods are suitable for automatic multi-variable system identification.

Model order reduction. The algorithms of 4SID incorporates implicit model or-

der reduction, which is useful especially for the real-world data, where noises

and disturbances play important role and increase the order of estimated

model.

Negative properties

Need a large set of input/output data. The statistical properties of geometri-

cal methods used in 4SID are the reason for the fact, that they need large

amount of input/output data samples. That limits the application in some

areas, where data are rather rare, such as economic modelling.

Theoretically complex background. The algorithms are built on the geometri-

cal projections in the high dimensional row or column spaces of certain ma-

trices. This makes them uneasy to understand, however, as will be shown

(Chapter 4), they can be interpreted in the other well known frameworks.

Difficult recursification. The basic algorithms were developed to identify the sys-

tem parameters from off-line data, i.e. identification from given complete se-

quence of input/output data. However, the industrial applications need the

recursive algorithm to identify in the real-time from on-line data. This is still

rather problem for 4SID methods, but recent articles have shown promising

results.

Prior knowledge can not be easily incorporated into 4SID methods. These meth-

ods have black-box approach to the identified system, however there is often a

priori information, which should be exploited to increase the quality and the

robustness of the identification.

Recent articles showed, that subspace methods can be modified to perform well

even in the closed-loop identification [11, 12] and the new effective algorithms for

an on-line recursive identification [9, 10] were also proposed.
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The usual description of a deterministic identification, which is rather academ-

ical, will be skipped in this work and the stochastic systems will be treated right

from the beginning.

This work is organized as follows. First an overview of the geometric tools, used

in 4SID, is presented in chapter 2. Chapter 3 shows the principles of 4SID methods

and describes the mostly used algorithms and their properties. Chapter 4 interprets

4SID methods in the well known frameworks of least-squares, Kalman filter and

instrumental variable methods. Chapter 5 summarizes the recent advances in the

field of 4SID, followed by chapter 6 proposing new research direction for our further

work, dealing with the prior information incorporation and 4SID recursification.

Several chapters are supplied with a section ’Notes’, usually giving the less formal

comments about the principles and the inner nature of the described methods.



Chapter 2

Geometric Tools

This chapter shows an overview of main geometric tools used in 4SID methods and

some necessary algebraic background. The main tools are the orthogonal and the

oblique projections.

2.1 Matrices with Hankel structure

The matrices with Hankel structure play important role in 4SID methods, because

the signals (the input/output data and the noises) appear in the algorithms in the

form of Hankel matrices. The first step of each algorithm is therefore to arrange the

available data into Hankel matrices.

A square or non-square matrix A ∈ Rm×n with Hankel structure is a matrix

with constant skew diagonals (anti-diagonals). In other words, in Hankel matrix,

the value of (i, j)th entry depends only on the sum i+ j. The matrix A with Hankel

structure can be created from a vector a =
(

a1 . . . am+n−1

)
with m + n − 1

elements

A =




a1 a2 a3 · · · an

a2 a3 a4 · · · an+1

a3 a4 a5 · · · an+2

...
...

...
. . .

...

am am+1 am+2 · · · am+n−1




.

Each entry of Hankel matrix can be also a matrix. This composition is than called

Block Hankel matrix.

The matrices with Hankel structure are usually denoted shortly as Hankel ma-

trices, as it will be also used in this work. However, that can be confusing, because

Hankel matrix is also a special square matrix H ∈ Rn×n defined as

hi,j =

{
0 if i + j − 1 > n

i + j − 1 otherwise

4



2.2. MATRIX ROW/COLUMN SPACE 5

2.2 Matrix Row/Column Space

The row space of an m × n matrix A, denoted by row(A) is the set of all linear

combinations of the row vectors of A.

Similarly the column space of an m × n matrix A, denoted by col(A) is the set

of all linear combinations of the column vectors of A.

2.3 Projections

In this section the definitions of the orthogonal and the oblique projection will be

shown. General matrices A ∈ Rp×j, B ∈ Rq×j and C ∈ Rr×j will be considered.

Orthogonal Projection

The orthogonal projection of the row space A on the row space of B is defined as

A/B = ABT
(
BBT

)†
B = AΠB, (2.1)

where •† is Moore-Penrose pseudo-inverse [14] of the matrix •. Similarly the pro-

jection of the row space A on the orthogonal space to the row space of B is defined

as

A/B⊥ = A (I − ΠB) = A
(
I −BT

(
BBT

)†
B

)
= AΠ⊥

B, (2.2)

The projections A/B and A/B⊥ decompose the matrix A into two matrices,

whose row spaces are mutually orthogonal (Figure 2.1)

A = A/B + A/B⊥.

A/B⊥

B⊥

A/B B

A

Figure 2.1: Orthogonal projection.
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A numerically efficient and robust computation of the orthogonal projection can

be done by LQ decomposition1

(
B

A

)
= LQ =

(
L11 0

L21 L22

)(
Q1

Q2

)
.

Then, the the orthogonal projections can be written as

A/B = L21Q1, (2.3)

A/B⊥ = L22Q2. (2.4)

Oblique Projection

The oblique projection of the row space A along the row space of B on the row space

of C is defined as

A /
B

C = A
(
CT BT

)
[((

C

B

)(
CT BT

))†]

first r
columns

C. (2.5)

This result can be derived from an orthogonal projection of the row space A to the

row space of

(
B

C

)
. A more effective way is to use LQ decomposition again




B

C

A


 =




L11 0 0

L21 L22 0

L31 L32 L33







Q1

Q2

Q3


 .

Then, the the orthogonal projections can be written as

A /
B

C = L32L
−1
22 C = L32L

−1
22

(
L21 L22

) (
Q1

Q2

)
. (2.6)

The oblique projection decomposes the matrix A into three matrices (Figure 2.2)

A = A /
B

C + A /
C

B + A/

(
B

C

)
.

Statistical Properties of Projections

Assume two general sequences uk ∈ Rnu and ek ∈ Rne , k = 1, 2, . . . , j, where ek is

zero mean and independent of yk

E (ek) = 0,

E
(
uke

T
k

)
= 0. (2.7)

1The LQ factorization of A is essentially the same as the QR factorization of AT . That is
A = (AT )T = (QR)T = LQT
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A

B

CA /
B
C

A/
C
B A/

(B
C
)

Figure 2.2: Oblique projection.

For the long series of data (j → ∞) usual in 4SID and assuming ergodicity, the

expectation operator E can be replaced by an average over one, infinitely long

experiment

E
(
uke

T
k

)
= lim

j→∞
1

j

j∑
i=1

uie
T
i . (2.8)

Putting the sequences into the row matrices

u =
(

u1 u2 . . . uj

)
,

e =
(

e1 e2 . . . ej

)
,

the sum in (2.8) can be rewritten to

E
(
uke

T
k

)
= lim

j→∞
1

j
ueT .

Considering independency (2.7) we find that

ueT = 0,

which implies that the signal u is perpendicular to the signal e.

Assume that y is a vector of the inputs and e is a vector of the additive distur-

bances. In the geometrical sense and for j →∞, the row vectors of the disturbances

are perpendicular to the row vectors of the inputs. Using an orthogonal projection

of the disturbance on the input, the noise is asymptotically eliminated

e/u = 0, (for j →∞).

This property is used in 4SID to eliminate the noise influence and is among basic

concepts of 4SID methods.
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2.4 Notes

The following notes may become more clear after reading the next chapter.

• An effect of the projections can be simplified into an ability to separate the

subspaces, which were joined together by a linear combination. The projec-

tions are able to eliminate the independent stochastic inputs, and to eliminate

the influence of measurable deterministic inputs.

• In the next chapter the deterministic inputs, disturbances and response from

the states will be shown to generate certain high-dimensional subspaces (spanned

by the rows of appropriate Hankel matrices). The output of LTI system will be

shown to generate similar subspace as a linear combination of these subspaces.

The power of projections is in their ability to separate this linear combination

from the knowledge of the inputs and outputs.

• The orthogonal projection is used to asymptotically eliminate the influence of

the disturbances from the joint space. This can be viewed as a separation of

an effective signal from the noise.

• The more capable oblique projection is also able to simultaneously eliminate

the influence of the disturbances and moreover to eliminate the influence of

the deterministic measurable signal (the input). This is mainly used in 4SID

methods to obtain the subspace generated only by the state sequence, which

is later used to obtain the model parameters.



Chapter 3

Subspace Identification Methods

Subspace identification methods are used to identify the parameters (matrices) of

LTI state space model from the input/output data. In this chapter the basics of

4SID methods will be given and three main algorithms (N4SID, MEOSP and CVA)

will be described.

The name ’subspace’ denotes the fact, that the model parameters of identified

linear system are obtained from the row or the column subspace of a certain matrix,

which is formed from the input/output data. Typically the column space is used to

extract information about the model and the row space is used to get Kalman filter

states sequence for the model.

3.1 State Space Model

In this work we will consider a state space model of combined deterministic-stochastic

system (Figure 3.1) in an innovation form [7]

xk+1 = Axk + Buk + Kek, (3.1)

yk = Cxk + Duk + ek, (3.2)

where uk ∈ Rm is the m-dimensional input, xk ∈ Rn is the n-dimensional state,

yk ∈ Rl is the l-dimensional output, K is the steady state Kalman gain and ek ∈ Rl

is an unknown innovation with covariance matrix E
[
eke

T
k

]
= Re. This model has

close relation with widely used stochastic state space model

xk+1 = Axk + Buk + vk, (3.3)

yk = Cxk + Duk + wk, (3.4)

where vk ∈ Rm and wk ∈ Rl are the process and the measurement noise with

covariance matrices E
[
vkv

T
k

]
= Q, E

[
wkw

T
k

]
= R and E

[
vkw

T
k

]
= S. The process

noise represents the disturbances entering the system and the measurement noise

represent the uncertainty in the system observations.

9
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Stochastic
Subsystem

Deterministic
Subsystem

e

u

+

+
y

H(d)

G(d)

Figure 3.1: Combined deterministic-stochastic system.

Now there is a question: ”Why to use an innovation form?”. The model (3.3–3.4)

has good physical interpretation, however the innovation model is more suitable for

4SID methods, because it has a noise model with less degrees freedom, which can

be more appropriately identified from the given input/output data. Both models

can be shown to be equivalent from the input/output point of view up to the second

order statistics (means and covariances).

From algebraic Riccati equation [13] the Kalman gain K and the innovations

covariance Re can be computed so that the stochastic properties of the output are

same for both models. The output spectral density of stochastic state space model

(3.1–3.2)

Syy = C(zI − A)−1Q(z−1I − A)−T CT + R

and the output spectral density of innovation form (3.1), (3.2)

S ′yy = [C(zI − A)−1K + I)]Re[C(z−1I − A)−1K + I]T

are equal for

K = APCT (CPCT + R)−1,

Re = CPCT + R,

which is the solution of algebraic Riccati equation for steady state Kalman filter and

where

P = APAT −K(CT PC + R)KT + Q.

As a consequence the uncertainty contained in the noises vk and wk (m + l dimen-

sions) can be for the outputs and the states described by the innovations ek (only l

dimensions).

3.2 Notations and Definitions

This section introduces further used notation. This makes it easy to find, but difficult

to understand before the rest is read.
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One of the principaly new ideas in 4SID methods, is to combine the recursive

state space model into single linear matrix equation, relating the signal matrices

with the parameters matrices (Section 3.5). Prior to do this some definitions are

necessary.

Signal Related Matrices

For the use in 4SID algorithms, all signals (inputs, outputs and noises) are arranged

into the Hankel matrices. Assume known set of input/output data samples uk,yk for

k ∈ 〈0, 1, . . . , i + h + j − 2〉. These samples can be arranged into Hankel matrices

with i and h block rows and j columns as follows

(
Up

Uf

)
=




u0 u1 . . . uj−1

u1 u2 . . . uj

...
...

. . .
...

ui−1 ui . . . ui+j−2

ui ui+1 . . . ui+j−1

ui+1 ui+2 . . . ui+j

...
...

. . .
...

ui+h−1 ui+h . . . ui+h+j−2




=

(
U+

p

U−
f

)
=




u0 u1 . . . uj−1

u1 u2 . . . uj

...
...

. . .
...

ui−1 ui . . . ui+j−2

ui ui+1 . . . ui+j−1

ui+1 ui+2 . . . ui+j

...
...

. . .
...

ui+h−1 ui+h . . . ui+h+j−2




,

where Up is the matrix of past inputs and Uf is the matrix of future inputs. Although

most data samples can be found in both matrices, the notation past/feature is

appropriate, because corresponding columns of Up and Uf are subsequent without

any common data samples and therefore have the meaning of the past and the future.

The distinction between the past and the future is important for Kalman filter and

Instrumental variables concepts used in 4SID.

Notice that the entries of Hankel matrices can be the vectors uk ∈ Rm, therefore

they are called block Hankel matrices with the dimensions Up ∈ Rim×j, Uf ∈ Rhm×j,

U+
p ∈ R(i+1)m×j, U−

f ∈ R(h−1)m×j. The parameters i and h allow for the different

number of block rows for past Up and Uf future. This is different to some sources,

where both parameters are assumed equal.

The values of the coefficients i and h are usually selected slightly larger then the

upper bound of expected system order and the coefficient j is approximately equal

to the number of measured data at disposal (j À i, j À h). From i and h to j ratio

it is obvious that Hankel matrices Up and Uf have a structure with long rows.

Matrices U+
p and U−

f are created from Up and Uf by moving the first block row

from Uf to the end of Up. This variation is later used to retrieve the system matrices.

For the outputs yk and the noises ek similar Hankel matrices Yp, Yf and Ep, Ef

can be constructed. A combination of Up and Yp denoted as Wp is used as a regressor

Wp =

(
Up

Yp

)
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System state sequence is also used in a matrix form with the following structure

Xp = (x0 x1 . . . xj−1) , Xf = (xi xi+1 . . . xi+j−1) .

Parameters Related Matrices

The extended observability matrix Γk is an extension of observability matrix for a

number of block rows higher then the system order k ≥ n

Γk =




C

CA
...

CAk−1


 ∈ Rkl×n.

Similarly the reversed extended controllability matrices ∆d
i and ∆s

i corresponding

to the deterministic and stochastic parts respectively are defined as

∆d
k =

(
Ak−1B Ak−2B . . . B

) ∈ Rn×km,

∆s
k =

(
Ak−1K Ak−2K . . . K

) ∈ Rn×km,

where K is the stationary Kalman gain.

The last two matrices Hd
k and Hs

k are Toeplitz matrices composed from the

impulse responses (Markov parameters) of deterministic and stochastic subsystems

respectively

Hd
k =




D 0 0 . . . 0

CB D 0 . . . 0

CAB CB D . . . 0
...

...
...

. . .
...

CAk−2B CAk−3B CAk−4B . . . D



∈ Rkl×km, (3.5)

Hs
k =




I 0 0 . . . 0

CK I 0 . . . 0

CAK CK I . . . 0
...

...
...

. . .
...

CAk−2K CAk−3K CAk−4K . . . I



∈ Rkl×kl.

3.3 Problem formulation

The basic solved problem can be simply stated as follows
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Given

s samples of the input sequence {u(0), . . . , u(s− 1)} and the output

sequence {y(0), . . . , y(s− 1)}

Estimate

the parameters of the combined deterministic-stochastic model in the

innovation form (3.1–3.2). It means to estimate the system order n and to

obtain system matrices A, B, C, D, K and covariance matrix Re of the

noise ek.

3.4 Basic Idea

The very basic and important idea in 4SID is that to identify the parameters of a

state space model (3.1–3.2), it is sufficient to known either

column space of Extended ob-

servability matrix

Γh =




C

CA
...

CAh−1




or

row space of State sequence ma-

trix

Xf =



| | |
xi xi+1 . . . xi+j−1

| | |


 .

An important fact is that we do not need exact numerical values, instead it is

sufficient to know only the respective subspaces spanned by these matrices. That

is because the state space model is not unique due to arbitrary state space basis

selection, but the subspaces spanned by the columns of Γh and by the rows of Xf are

invariant. Any basis of these subspaces formed into matrix is then valid Extended

observability matrix or State sequence matrix (basis selection must be jointed).

Subspaces sufficiency

The subspaces are sufficient, because for example the simplest way to get the model

parameters from the state sequence matrix row space is to take its any basis which

will be a valid state sequence. Then the inputs, the outputs and the states are

known and they are related by the state space model, which can be written into a

set of linear equation

(
xi+1 xi+2 . . . xi+j−1

yi yi+1 . . . yi+j−2

)
=

(
A B

C D

)(
xi xi+1 . . . xi+j−2

ui ui+1 . . . ui+j−2

)

and solved by the least squares (LS) or total least squares (TLS) to get the model

parameters A, B, C, D.



14 CHAPTER 3. SUBSPACE IDENTIFICATION METHODS

3.5 Single equation formulation of SS model

As already mentioned before, the starting point of 4SID methods is a combination

of the recursive state space innovation model (3.1–3.2) into one single linear matrix

equation. This can be done with Hankel matrices by recursively substituting (3.1)

into (3.2)

Yp = ΓiXp + Hd
i Up + Hs

i Ep, (3.6)

Yf = ΓhXf + Hd
hUf + Hs

hEf , (3.7)

Xf = AiXp + ∆d
i Up + ∆s

iEp. (3.8)

The equations (3.6) and (3.7) are similarly defining outputs as a linear combination

of previous states by the extended observability matrix Γ• (response from the states)

and a linear combination of previous inputs and noises by their respective impulse

responses Hd
• and Hs

• . The equation (3.8) is relating the future and the past states

under the influence of the inputs and the noises.

3.6 Estimating subspaces

Assuming the sufficiency of the subspaces for SS model identification, now the prob-

lem of estimating invariant subspaces of the extended observability matrix Γh and

the state sequence matrix Xf from the input/output data will be treated. This

estimation is also related to the determination of the system order.

The important observation is that to obtain these subspaces, only the term ΓhXf

is needed and its estimate can be obtained from data by the projections. This term

is usually denoted as a matrix Oh

Oh = ΓhXf .

and it can be split into the required subspaces by singular value decomposition

(SVD).

Description of the matrix Oh content is usually avoided, but each column can

be seen as a response of the system to the nonzero initial state from an appropriate

column of the matrix Xf , without any deterministic or stochastic inputs.

The corollary is that Oh is numerically invariant to the changes of the state

space basis, although matrices Γh and Xf have invariant only the respective column

and row space.

Deterministic Oh splitting

For the pure deterministic system it is a simple task, because the matrix Oh has the

rank equal to the system order with the following SVD factorization

Oh = USV T =
(

U1 U2

) (
S1 0

0 0

)(
V T

1

V T
2

)
,
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where S1 is n× n sub-matrix of S containing nonzero singular values of Oh and U1

and V T
1 are the appropriate parts of the matrices U and V T . The number of nonzero

singular values is equal to the order of the system and the required subspaces can

be obtained as

Γh = U1S
1/2
1 , Xf = S

1/2
1 V T

1 ,

where a square root of S1 is simple, because S1 is a diagonal matrix. Notice that

multiplication by S
1/2
1 can be omitted, because we are interested only in the spanned

spaces, but it is present for the equality Oh = ΓhXf to hold.

Stochastic Oh splitting

In the presence of the noise, the matrix Oh will be of the full rank. Thus all singular

values of Oh will be nonzero, i.e. the diagonal of the matrix S will have nonzero

entries in nonincreasing order. The rank of the identified system has to be chosen

from the number of significant singular values. This can be tricky task, for which few

theoretical guidelines are available. Assuming the system order to be determined,

the SVD matrices are partitioned into the ’signal’ and ’noise’ parts

Oh =
(

Us Un

) (
Ss 0

0 Sn

)(
V T

s

V T
n

)
,

where Us and V T
s contain n principal singular vectors, whose corresponding singular

values are collected in the n× n diagonal matrix Ss. The ’cleaned’ estimates of the

extended observability matrix and state sequence matrix are then

Γh = UsS
1/2
s , Xf = S1/2

s V T
s . (3.9)

Estimating Oh from the I/O data

In this section the term ΓhX̂f will be obtained from the I/O data in the signal

matrices by an oblique projection. It will be obtained from the equation (3.7),

where the last two terms on the right side will be eliminated by a projection and

later it will be used as an approximation of Oh
.
= ΓhX̂f , where X̂f is the Kalman

filter estimate of Xf from the available past data Wp.

Let’s try an orthogonal projection of the future output Yf onto the subspace of

past data Wp and future inputs Uf

Yf /

(
Wp

Uf

)
= Γh X̂f + Hd

h Uf .

The orthogonal projection eliminated the noise term, because the estimated state

sequence X̂f and the future inputs Uf lies in the joint row space of Wp and Uf ,

but the future noise Ef is perpendicular to this subspace for the number of samples

going to infinity (Figure 3.2).
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Figure 3.2: Orthogonal projection of input/output data.

Proof of X̂f laying in the joint row space of Wp and Uf : From the equation (3.6),

the past states Xp can be expressed as

Xp = Γ†iYp − Γ†iH
d
i Up − Γ†iH

s
i Ep =

(
Γ†i −Γ†iH

d
i −Γ†i Hs

i

)



Yp

Up

Ep


 .

Substituting this expression into (3.8) will yield for the future states Xf

Xf = AiXp + ∆d
i Up + ∆s

iEp = AiΓ†iYp − AiΓ†iH
d
i Up − AiΓ†iH

s
i Ep + ∆d

i Up + ∆s
iEp

=
(

AiΓ†i (∆d
i − AiΓ†iH

d
i ) (∆s

i − AiΓ†iH
s
i )

)



Yp

Up

Ep


 .

These two last equations clearly indicate, that both past states Xp and future states

Xf can be obtained as a linear combination of past data Yp, Up, Ep. In other words,

they lie in their joint row space.

To compute an estimate of Xf the noise term can be replaced by its mean value

X̂f =
(

AiΓ†i (∆d
i − AiΓ†iH

d
i )

) (
Yp

Up

)
= LwWp,

showing X̂f to lie in the row space of Wp.

¤
Orthogonal projection helps us to get rid of the noise term, but we need to

eliminate also the influence of the future inputs Uf and that is where an oblique

projection is the right tool

Yf /
Uf

Wp = Γh X̂f . (3.10)
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Making the oblique projection of the future outputs Yf onto the row space of past

data Wp along the row space of future inputs Uf will give exactly the term we are

looking for - ΓiX̂f (Figure 3.3).

Figure 3.3: Oblique projection of input/output data.

Proof: Firstly the oblique projection of every term in (3.7) will be considered

Yf /
Uf

Wp =
(
ΓhXf + Hd

hUf + Hs
hEf

)
/
Uf

Wp = ΓhXf /
Uf

Wp + Hd
hUf /

Uf

Wp + Hs
hEf /

Uf

Wp.

Taking each term separately and considering the assumptions from section 3.8:

• For the number of samples and number of past data (rows) going to infinity

(i, j →∞)

lim
i,j→∞

Xf /
Uf

Wp = lim
i,j→∞

Xf/Wp = X̂f ,

because as has been shown, X̂f is Xf estimate lying in Wp.

• From the oblique projection definition it is obvious that

Uf /
Uf

Wp = 0.

• For the number of samples going to infinity and from the noises independency

lim
j→∞

Ef /
Uf

Wp = 0.

In the summary

lim
i,j→∞

Yf /
Uf

Wp = ΓhX̂f

¤
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All these projection equalities are exact for the number of data approaching

infinity (i, j →∞). To summarize the effect of the projections

Yf = Γh Xf + Hd
h Uf + Hs

h Ef ,

Yf /

(
Wp

Uf

)
= Γh X̂f + Hd

h Uf ,

Yf /
Uf

Wp = Γh X̂f .

3.7 Estimating SS model parameters

Assume that the matrix Oh is already known. Now it can be used to get the state

space model parameters by splitting it into the required subspaces by SVD as was

shown in the previous section. The parameters can be basically obtained from the

extended observability column space col(Γh) or the state sequence matrix row space

row(X̂f ).

Estimating parameters from row(X̂f)

Assume the inputs, the outputs and the state sequences are now available (the basis

for the state sequence row space was chosen)

X̂i =
(

x̂i, . . . , x̂i+j−1

)
, X̂i+1 =

(
x̂i+1, . . . , x̂i+j

)
,

Ui =
(

ui, . . . , ui+j−1

)
, Yi =

(
yi, . . . , yi+j−1

)
.

Then in the presence of no feedback the parameters of the innovation model can be

consistently estimated from the following matrix equation relating all data by the

state space model (
X̂i+1

Yi

)
=

(
A B

C D

) (
X̂i

Ui

)
+ ε.

The solution can be obtained by least squares or total least squares. Denoting

Θ =

(
A B

C D

)
, X =

(
X̂i

Ui

)
, Y =

(
X̂i+1

Yi

)
,

the least squares solution can be obtained as

Θ = YX † = YX T
(XX T

)−1
,

and the stochastic parameters as

Re = Σ22, K = Σ12Σ
−1
22 ,

where

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
=

1

j − (n + m)
(Y −ΘX ) (Y −ΘX )T .

The consistency of solution requires j →∞.
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Estimating parameters from col(Γh)

First the extended observability matrix Γh is obtained as a basis of col(Γh) or it is

obtained directly from SVD of ΓhX̂f (3.9). Then the matrices A, B, C and D are

determined in two steps.

Determination of A and C

The matrix C can be read directly from the first block row of Γh. The matrix A is

determined from the shift structure of Γh. Denoting

Γh =




C
...

CAk−2


 ∈ Rl(h−1)×n, Γh =




CA
...

CAk−1


 ∈ Rl(h−1)×n,

where Γh is Γh without the last block row and Γh is Γh without the first block row,

the shift structure implies that

ΓhA = Γh.

This equation is linear in A and can be solved by LS or TLS.

Determination of B and D

Obtaining B and D is more laborious. Multiplying the I/O equation (3.7) from the

left by Γ⊥h and from the right by U †
f yields to

Γ⊥h YfU
†
f = Γ⊥h ΓhXfU

†
f + Γ⊥h Hd

hUfU
†
f + Γ⊥h Hs

hEfU
†
f ,

where Γ⊥h ∈ R(lh−n)×lh is a full row rank matrix satisfying Γ⊥h Γh = 0. The equation

can be simplified to

Γ⊥h YfU
†
f = Γ⊥h . Hd

h.

Denote i-th column of LHS as Mi and i-th column of Γ⊥h as Li, then

(M1 M2 . . . Mh

)
=

(L1 L2 . . . Lh

)




D 0 0 · · · 0

CB D 0 · · · 0

CAB CB D · · · 0
...

...
...

. . .
...

CAh−2B CAh−3B CAh−4B · · · D




.

As shown in [1], this can be rewritten to




M1

M2

...

Mh


 =




L1 L2 · · · Lh−1 Lh

L2 L3 · · · Lh 0

L3 L4 · · · 0 0
...

...
. . .

...
...

Lh 0 0 · · · 0




(
Il 0

0 Γh

) (
D

B

)
,

which is an overdetermined set of linear equations in the unknowns B and D and it

can be solved by LS or TLS.
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3.8 N4SID algorithm summary

Here the complete 4SID algorithm [1] will be shown

Assumptions

1. The process noise wk and measurement noise vk are not correlated with the

input uk (open-loop identification).

2. The input u(t) is assumed to be persistently exciting [7] of the order i + h. It

means that the spectrum Θu(ω) is different from zero in at least i + h points

on the interval −π < ω < +π or that for multiple-input system the input

covariance matrix

Ruu =

(
Up

Uf

)(
Up

Uf

)T

has full rank which is m(i + h).

3. The number of measurements goes to infinity j →∞.

4. The user-defined weighting matrices W1 ∈ Rlh×lh and W2 ∈ Rj×j are such that

W1 is of full rank and W2 obeys: rank(Wp) = rank(WpW2).

Algorithm

1. Firstly arrange the I/O data into Hankel signal matrices Up, Uf , Yp, Yf and

their respective +/- modifications.

2. Calculate the oblique projections

Oh = Yf /
Uf

Wp,

Oh+1 = Y −
f /

U−f

W+
p .

3. Compute SVD of the weighted oblique projection

W1OhW2 = USV T

4. Determine the system order by inspecting the singular values of S and partition

the SVD accordingly to obtain U1 and S1

Oh = USV T =
(

U1 U2

) (
S1 0

0 S2

)(
V T

1

V T
2

)
.
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5. Determine Γh and Γh as

Γh = W−1
1 U1S

1/2
1 ,

Γh = Γh(1 : h− 1, :). (Matlab like notation)

6. Determine the state sequences

X̂i = Γ†hOh,

X̂i+1 = Γh
†Oh+1.

7. Estimate the parameters A, B, C and D form a set of linear equations
(

X̂i+1

Yi

)
=

(
A B

C D

) (
X̂i

Ui

)
+ ε.

8. Estimate the stochastic parameters Re and K from the covariance estimate of

the residuals as (
Σ11 Σ12

Σ21 Σ22

)
=

1

j − (n + m)
εεT

Re = Σ22

K = Σ12Σ
−1
22

There are several more sophisticated modification improving robustness and

eliminating bias.

Weighting matrices

The weighting matrices W1 and W2 were introduced to integrate several formerly

separate 4SID algorithms, which will be described later, into this single one [6].

W1 W2

N4SID Ili Ij

MOESP Ili Π⊥
Uf

CVA
(
(Yf/U

⊥
f )(Yf/U

⊥
f )T

)−1/2
Π⊥

Uf

However there are some other interpretations of weighting matrices. 4SID meth-

ods determine Γh and X̂f up to within a non-singular similarity transformation

T ∈ Rn×n

Γ′h = ΓhT

X̂ ′
f = T−1X̂f .

This ambiguity raises the following question: In which state space basis are Γh

and X̂f determined when a subspace method is used to estimate them? And that is

where the weighting matrices play the key role. The matrices W1 and W2 determines

the basis of estimates. By a proper choice of weighting matrices, the identification

result can be also influenced in a frequency specific way [7].
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3.9 Other 4SID algorithms

The algorithm described in a previous section is called N4SID (Numerical algorithm

for 4SID) [1]. There are several others (PI-MOESP, PO-MOESP, CVA), which will

be described in this section. It is good to be aware, that all these advanced 4SID

algorithms share several fundamental steps. Early 4SID algorithms will be omitted,

because they work well for deterministic data, but struggle under the noise burden.

The idea is to correlate both sides of the basic matrix equation(3.11) with quantities

that eliminate the term with Uf and make the noise influence term with Ef disappear

asymptotically. In more details:

1. They all start with a single equation matrix formulation of SS model

Yf = ΓhXf + Hd
hUf︸ ︷︷ ︸

input term

+ Hs
hEf︸ ︷︷ ︸

noise term

(3.11)

and try to use different projections to estimate the term ΓhXf out of Yf or at

least to get the column space of the extended observability matrix Γh. This

incorporates the elimination of the last two terms - the effect of the input and

the effect of the noise.

2. Removing the input term. The straightforward idea is to orthogonally

project (3.11) onto the row space orthogonal to Uf . The projection matrix

Π⊥
Uf

= I − UT
f

(
UfU

T
f

)†
Uf ,

will eliminate the input influence

UfΠ
⊥
Uf

= Uf − UfU
T
f

(
UfU

T
f

)†
Uf = 0,

but the noise term Ef will be left intact, because it is uncorrelated with the

deterministic input.

YfΠ
⊥
Uf

= ΓhXfΠ
⊥
Uf

+ Hs
i EfΠ

⊥
Uf

. (3.12)

The oblique projection used in N4SID combines this and the next step.

3. Removing the noise term. To eliminate the effect of the noise, the algo-

rithms use instrumental variable methods (IVM) with different instruments

selection. In some methods the IV principles are not obvious at the first sight

and will be discussed in Section 4.3.

Shortly it consists of finding good instruments ξ(t), which are uncorrelated

with the noise, sufficiently correlated with the state and which are orthogonal

to the inputs Uf . These instruments are usually created from the past inputs

and outputs Up, Yp to decorrelate the noise term from (3.12):

YfΠ
⊥
Uf

ξT = ΓhXfΠ
⊥
Uf

ξT ,

Hs
i EfΠ

⊥
Uf

ξT → 0 as j →∞.
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4. Finally they use the estimates of extended observable matrix Γh or state se-

quence matrix Xf or extended controllability matrix ∆h or their combination

to compute SS model parameters.

It is obvious, that there are several design variables in general 4SID algorithm,

which differentiate the particular algorithms. The reason for many 4SID algorithms

is the different selection of these design variables, because at present it is not

fully understood how to choose them optimally [7].

MOESP

The acronym MOESP [8, 16] stands for ”Multivariable Output Error State sPace”.

These methods are based on the combination of the projections and explicit instru-

mental variable methods. SS model parameters are recovered from the estimated

extended observability matrix.

For noise free data, the subspace identification reduces to the orthogonal projec-

tion of the equation (3.11) onto the row space of U⊥
f , resulting in numerically exact

term ΓhXf . However in the presence of noise, the geometrical properties of (3.11)

are lost. Therefore the IVs are used as the instruments for removing the effect of the

noise term. The informative part of the signal term must, however, be left intact.

Let ξ(t) denote the vector of instruments. The instrumental variables must satisfy

the following requirements

1. IVs ξ(t) must be uncorrelated with the noise

E
[
e(t)ξ(t)T

]
= 0.

2. IVs ξ(t) must be sufficiently correlated with the state to allow recovery of the

estimated Γh column space

rank
(
E

[
x(t)ξ(t)T

])
= n. (3.13)

3. IVs ξ(t) must be orthogonal to the input Uf (to leave the informative part

undisrupted).

The first two requirements (usual in IVM) suggest the input signal as a candidate

instrument. Clearly, this is incompatible with the third requirement. A solution

is the very partitioning of data into the past and the future parts. Afterwards the

feasible instrument is the past input Up.

For simultaneously removing the Uf term and decorrelating the noise, Verhaegen

[16] proposed to consider the following quantity (the equation 3.11 multiplied by

Π⊥
Uf

UT
p from the right side)

YfΠ
⊥
Uf

UT
p = ΓhXfΠ

⊥
Uf

UT
p + Hs

hEfΠ
⊥
Uf

UT
p . (3.14)
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It is not difficult to see that the input term was eliminated Hd
i UfΠ

⊥
Uf

UT
p = 0 and

the noise term is asymptotically disappearing with the number of samples going to

infinity

lim
j→∞

EfΠ
⊥
Uf

UT
p = 0.

The rank condition (3.13) of the matrix

XfΠ
⊥
Uf

UT
p

is shown in [16] to be equal to the number of purely deterministic states. In other

words, with only past inputs as IVs, only the deterministic subsystem can be iden-

tified. Any additional dynamics due to the colored disturbances are lost in the IVs

correlation. The algorithm based on this choice of IVs is called PI-MOESP (Past

Inputs MOESP) and it consists of applying SVD to LHS of (3.14) and taking its left

singular vectors as an estimate of the extended observability matrix, which is later

used for retrieving the system parameters.

If a complete state space model is desired, incorporating both the deterministic

and the stochastic subsystem, then IVs must be extended with the past outputs

Yp as an additional instrument. The algorithm is then called PO-MOESP (Past

Outputs MOESP). Similarly to (3.14) of PI-MOESP, with extended IVs we get

YfΠ
⊥
Uf

(
UT

p

Y T
p

)
= ΓhXfΠ

⊥
Uf

(
UT

p

Y T
p

)
+ Hs

hEfΠ
⊥
Uf

(
UT

p

Y T
p

)
. (3.15)

The matrix on the left side can be used as in PI-MOESP, but PO-MOESP usually

works differently. Firstly computing the following QR factorization




Uf

Up

Yp

Yf


 =




L11 0 0 0

L21 L22 0 0

L31 L32 L33 0

L41 L42 L43 L44


 Q,

where the Lii are lower triangular. The next step is to compute truncated SVD

(
R42 R43

)
= ÛsŜsV̂

T
s + ÛnŜnV̂

T
n .

The extended observability matrix is then estimated by Ûs, and A and C are ex-

tracted in the usual way. For finding B and D, Verhaegen argues [16] that the

least-squares solution to the overdetermined system of equations

(
R31 R42

) ≈ Hd
h

(
R11 R22

)

provides a consistent estimate of Hd
h, from which B and D are easily calculated.
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CVA

CVA [22] is a class of algorithms, which stands for ”Canonical Variate Analysis”.

They are based on the concept of principal angles between subspaces.

The considered subspaces are the row space of conditional past data Wp/U
⊥
f

and the row space of conditional future outputs Yf/U
⊥
f . In [6] it is shown that

the number of principal angels between those subspaces
[
Wp/U

⊥
f ^Yf/U

⊥
f

]
different

from π/2 is equal to the model order. Actually selecting non-perpendicular angles

for the noisy data is the same problem as selecting non-zero singular numbers of Oh

SVD in N4SID algorithm.

The fundamental idea of CVA is that the estimate of the future states X̂f can be

found from the principal directions between past and future data
[
Wp/U⊥

f ^Yf/U
⊥
f

]
.

More precisely not the states, but their projection

[
Wp/U⊥

f ^Yf/U
⊥
f

]
= X̂f/U

⊥
f .

These methods, although they are based on the principal angles and directions, can

be also implemented by N4SID with appropriate weighting matrices (Section 3.8).

Larimore claims [22] that the weighting used for this method is optimal for the state

order determination from finite samples sizes. This has been shown by example, but

has never been proven. A last remark concerns the sensitivity to scaling. While the

algorithms N4SID and MOESP are sensitive to scaling of the inputs and/or out-

puts, the CVA algorithm is insensitive. This is because only angles and normalized

directions are considered in the CVA algorithm.

3.10 Historical note

The subspace methods have their origin in state-space realization theory as devel-

oped in the 1960s. A classical contribution is by Ho and Kalman (1966), where a

scheme for recovering the system matrices from the impulse response is outlined.

A problem with realization theory is the difficulty of obtaining a reliable non-

parametric estimate of the impulse response. A number of algorithms require special

inputs, such as impulse or white noise signals. An alternative approach is to extract

the desired information directly from the input/output data, without explicitly form-

ing impulse response and that is the case of 4SID methods.

Realization theory

Realization theory allows to get the system matrices of state space model from

a discrete impulse response of a system. Assume a state space description of a

deterministic system

x(t + 1) = Ax(t) + Bu(t), (3.16)

y(t) = Cx(t) + Du(t). (3.17)
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This description is not unique due to arbitrary state space basis selection. For

any nonsingular matrix T ∈ Rn×n the state x(t) can be transformed to the new

state x(t) = T x̄(t) giving the following model

x̄(t + 1) = T−1ATx̄(t) + T−1Bu(t),

y(t) = CT x̄(t) + Du(t),

which is equivalent with (3.16),(3.17). However the impulse responses are the same

in any state space basis

H̄(z) = CT
(
zI − T−1AT

)−1
T−1B + D = C (zI − A)−1 B + D = H(z)

The impulse sequence of the deterministic model can be easily computed from

(3.16–3.17) as

h(t) =





0 t < 0

D t = 0

CAt−1B t > 0

(3.18)

Consider the finite impulse sequence is known. The matrix D can be read directly

from h(0). To obtain other matrices the elements of impulse response are arranged

into Hankel matrix as follows

H =




h(1) h(2) h(3) . . . h(n + 1)

h(2) h(3) h(4) . . . h(n + 2)

h(3) h(4) h(5) . . . h(n + 2)
...

...
. . .

...
...

h(n + 1) h(n + 2) h(n + 3) . . . h(2n + 1)




.

Using (3.18) it is straightforward to verify that H can be factorized as

H = Γn+1∆n+1,

where

∆i =
(

B AB . . . Ai−1B
)

is the extended controllability matrix. For a minimal realization, the matrices Γn+1

and ∆n+1 have full rank, and hence H has rank n, equal to the system order. The

algorithm of Ho and Kalman is based on the above observations.

In the first step the matrix H is factorized by SVD to get Γn+1 and ∆n+1. In

the next step, the matrices B and C can be read directly from the first m columns

of ∆n+1 and l rows of Γn+1 respectively. The remaining matrix A is computed using

shift invariance structure of Γi:

Γn+1 = Γn+1A.

This property of extended observability matrix can be exploited by the use of least

squares or total least squares to get the system matrix A.
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The disadvantage of the realization methods is their need for the impulse re-

sponse. Several non-parametric methods can be used to estimate it, e.g. Correlation

analysis or Inverse discrete Fourier transformation, but the results are not satisfac-

tory. 4SID methods are in principal similar, but they do not need the impulse

response of the system.

The similarity is in the matrix Oh, which can be seen as ’an impulse response

from the states’. And it is shown to be equal to the multiplication of the extended

observability matrix and the state sequence matrix, just like H = Γn+1∆n+1. The

advantage is that Oh can be obtained directly from the I/O data.

3.11 Notes

• One has to keep in mind that 4SID consider signal matrices (Up, Uf , Yp, Yf ,

Ep, Ef ) as a definition of subspaces spanned by their rows. In other words the

exact numerical values of the row vectors are of lower importance.

• The very simple observation allowing us to work with the signal matrices row

spaces, is that in the single matrix SS equations (3.6-3.8), they are always

multiplied by the parameters matrices from the left. This means, that the

multiplication result and the result on the RHS is only a linear combination

of the signal matrix rows.

• The basic reasons allowing 4SID methods to work are simply non-uniqueness of

the state space model description and asymptotic properties of the projections

allowing to eliminate the noise and to project out the known input signal.

• Several proposed 4SID algorithms are basically same and they differ only in

the projection and instrumental variable selection and in the way of obtaining

the model parameters from the estimated subspaces of Γh or Xf . The N4SID

algorithm with the weighting matrices unifies the others, because its middle

product of the estimation, the matrix Oh, is independent of the state basis

selection.



Chapter 4

Interpretations and Relations

In this chapter, several interpretations of 4SID methods in the well known frame-

works will be shown in one integral form. The connections and the similarities with

other methods will be emphasized.

4.1 Multi-step Predictions Optimization

There is a natural question to ask about 4SID methods. Is there any criterion that is

minimized in the process of identification as it is usual for the other methods (ARX,

ARMAX)? Even the very recent articles [15] state, that there is no such suitable

minimization criterion:

”The available methods (4SID methods) are algebraic in nature as they

are not based on a suitable identification criterion minimization.”

However we have shown [21] that it is possible to find such criterion and by its

minimization, the pivotal oblique projection of N4SID can be obtained. In the

following, it will be shown, that 4SID methods are minimizing multi-step predictions

error of the model.

Multi-step Predictor Form

Assume the state space model (3.1–3.2) is known, and at time k, the system state

xk and the sequence of future inputs {uk, uk+1, . . . , uk+h−1} are also known. Then

from the state equations (3.1–3.2) we can compute the predictions of the outputs

from 0 to h− 1 steps ahead (unknown innovations are replaced by their mean value

ek = 0)

ŷk+m =





Cxk + Duk m = 0,

CAmxk + Duk+m +
m−1∑
n=0

CAm−n−1Buk+n m ∈ 〈1, h− 1〉 .

28
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This expression can be rewritten utilizing matrices defined in Section 3.2 as



ŷk

ŷk+1

...

ŷk+h−1


 = Γhxk + Hd

h




uk

uk+1

...

uk+h−1


 . (4.1)

In this way we get the sequence of output predictions from time k to k + h− 1 for

one initial time k. Additionally, the output predictions for j subsequent initial time

instants can be written in a compact form using Hankel matrix notation



ŷi . . . ŷi+j−1

ŷi+1 . . . ŷi+j

...
. . .

...

ŷi+h−1 . . . ŷi+h+j−2


 = Γh (xi . . . xi+j−1) + Hd

h




ui . . . ui+j−1

ui+1 . . . ui+j

...
. . .

...

ui+h−1 . . . ui+h+j−2


 ,

which can be shortened to

Ŷf = ΓhXf + Hd
hUf . (4.2)

Note that every column of Ŷf represents the sequence of linear output predictions

(for the initial time determined by the index of the first element in the column) based

on the initial state x and the sequence of successive inputs u from the corresponding

columns.

An important property of the equation (4.2) is that for i, j → ∞ it can be

rewritten as

Ŷf = LwWp + Hd
hUf ,

where the future states Xf were replaced by a linear combination of past inputs

and outputs Wp =
(

Yp

Up

)
(as it was shown in Section 3.6). It correspond to the fact,

that the system states can be obtained from the Kalman filter running over infinite

set of historical input/output data Wp. System states are thus representing system

history.

In the real case, the condition i, j → ∞ is not satisfied (only a finite data set

is available) and thus the Kalman filter will give only the best possible linear state

estimate X̂f based on available data. Then similarly like before it can be shown

that the following replacement can be made

Ỹf = ΓiX̂f + Hd
hUf ∼ Ỹf = LwWp + Hd

hUf , (4.3)

where Ỹf is the best output linear estimate using the limited available data set.

Estimated system states X̂f are the same as we can obtain from the bank of

parallel non-stationary Kalman filters running over the columns of the matrix Wp

with the following initial conditions [1]

X̂0 = Xp /
Uf

Up,

P0 = cov(Xp) =
1

j
XpX

T
p .
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Deriving 4SID oblique projection from multi-step predictions

optimization

We will try to find a linear state space model of a certain order, that will most

accurately predict the behavior of the real process according to the measured data.

Firstly we will show how to derive the oblique projection (3.10) from the multi-step

predictor optimization and then we will reveal the intuition behind.

In other words we would like to find matrices Lw and Hi such that the predictions

according to the equation (4.3) will correspond with the measured data. The quality

of the predictions will be measured by Frobenius matrix norm

min
Lw,Hi

∥∥∥Yf − Ỹf

∥∥∥
2

F
= min

Lw,Hi

∥∥∥∥Yf −
(

Lw Hi

) (
Wp

Uf

)∥∥∥∥
2

F

. (4.4)

Minimizing (4.4) means finding the best linear predictor in the sense of the least

squares. The optimal values of Lw and Hi can be found from matrix pseudo-inverse

(
Lw Hi

)
= Yf

(
Wp

Uf

)†
.

Denoting D =
(

Wp

Uf

)
, the pseudo-inversion can be written as

(
Lw Hi

)
= YfDT

(DDT
)−1

, (4.5)

multiplying both sides by the matrix D from the right yields to

(
Lw Hi

)D︸ ︷︷ ︸
Ŷf

= Yf DT
(DDT

)−1D︸ ︷︷ ︸
ΠD

. (4.6)

We obtained an expression

Ŷf = Yf

/(
Wp

Uf

)
,

which represents the best linear prediction of Yf based on the available data. From

Ŷf we need to get only the part coming from the term LwWp, because it is equal to

ΓiX̂i, which is an estimate of the matrix Oi necessary for further identification using

SVD (Section 3.6). To get it separately from (4.6) it is sufficient to use the right

side of (4.5) and take only the first 2i columns and multiply them by the matrix Wp

alone

LwWp = YfDT
[(DDT

)−1
]
first 2i
columns

Wp.

On the right side we obtained an expression for the oblique projection (2.5)

LwWp = Yf /
Uf

Wp,



4.1. MULTI-STEP PREDICTIONS OPTIMIZATION 31

which can be rewritten using (4.3) as

Yf /
Uf

Wp = ΓiX̂f (= Oi),

yielding to the fundamental equation of subspace identification algorithm (3.10).

If the following conditions are satisfied

• the deterministic inputs uk are not correlated with the stochastic inputs ek

(open-loop identification),

• the inputs uk and ek are persistently exciting (i.e. all modes of the system are

excited either by the inputs or by the noises),

• the number of measurements goes to infinity j →∞,

then the identification will be consistent.

ARMAX vs. 4SID

The interpretation showed in the previous section revealed that 4SID and ARMAX

have closer relation than it may seems on the first sight. Both can be interpreted

to identify the models, which are the optimal predictors, but with the different

optimality criterion.

Regression methods give a model, which is a single-step optimal predictor and

4SID methods give a model which is a multi-step optimal predictor.

ARMAX 4SID

min
θ
‖y − Zθ‖F min

∥∥∥Yf − Ŷf

∥∥∥
F

= min
Lw,Hi

∥∥∥∥Yf −
(

Lw Hi

) (
Wp

Uf

)∥∥∥∥
F

Consequences

• ARMAX is a single-step optimal predictor and it can be shown that by cyclic

application of this single-step optimal predictor we can get multi-step optimal

predictor.

• However, this is true, but only for the data generated by ideal linear system.

For the real-world data the multi-step predictions will not be optimal. And

that is where 4SIM comes. Their models give multi-step optimal predictions

even for the real-world data. Especially for the models with a reduced order

and for the colored noises.
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Simulations

This section shows a comparison of the prediction abilities of ARMAX and 4SID

for non-ideal data and different model order reductions. The test input/output

sequences were generated by the 4th order state space model

xt+1 =




0.603 0.603 0 0

−0.603 0.603 0 0

0 0 −0.603 −0.603

0 0 0.603 −0.603


xt +




0.924

2.755

4.317

−2.644


ut +




−0.021

0.11

0.071

−0.103


et

yt =
( −0.575 1.075 −0.523 0.183

)
xt + (−0.714) ut + et

The quality of the models is estimated by the ability to predict, which is quite

different from the ability to accurately simulate the identified system, because for

predicting we need also a good description of the stochastic subsystem. Simulations

were done with 100 Monte-Carlo iterations using the following inputs:

Deterministic inputs: 1000 samples of Pseudo-Random Binary Signal (PRBS).

Stochastic inputs: white noise filtered with a low pass filter.
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Figure 4.1: Prediction Error vs. Model Order.

Figure 4.1 shows two graphs relating the prediction error sum of squares to the

number of predictions steps for ARMAX and 4SID identification. Different line

colors represent different model order reductions and correspond for both graphs.

The blue lines represent identification without order reduction (not considerring

stochastic subsystem) and both methods give similar results. The green lines are

one order reduction from the 4th order to the 3rd order, where the difference is
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becoming obvious and the red lines are two orders reduction from the 4th order to

the 2nd order showing significantly lower error for 4SID methods.

Notice that 4SID methods give flat errors, showing almost equal weight on the

prediction error steps, while regression methods clearly give stress to the single step-

error. This can be more clearly seen on Figure 4.2 emphasizing two rank reduction

comparison. This figure exactly follows the theoretical expectations showing lower
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1100

ARMAX
4SID

Prediction Steps

Figure 4.2: Prediction Error for reduced order model 4 → 2. In the blue oval

notice that ARMAX is better in single-step predictions, but significantly worse for

multi-step predictions.

prediction error of ARMAX (red line) for single-step prediction, but significantly

lower overall prediction error of 4SID (green line) on more prediction steps.

4.2 Kalman Filter Relation

The 4SID methods have one very interesting property in relation with Kalman filter

(KF). The 4SID algorithm can be interpreted as KF, estimating the system states

without prior knowledge of the system parameters (matrices).

This is possible due to an arbitrary state space basis choice of SS model. The

4SID methods estimate only the row space of state sequence matrix Xf , which is

independent of the basis selection and consequently use the fact that any of its basis

is a valid state sequence.

Firstly it will be shown that Kalman filter recursive formulas can be rewritten

into one single matrix linear equation.
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Non-steady state Kalman filter

Given:

• the initial state estimate x̂0,

• the initial estimate of the matrix P0,

• the input and output measurements u0, y0, . . . , uk−1, yk−1,

then the non-steady state Kalman filter state estimate x̂k is defined by the following

recursive formulas:

x̂k = Ax̂k+1 + Buk + Kk−1 (yk−1 − Cx̂k−1 −Duk−1) , (4.7)

Kk−1 =
(
G− APk−1C

T
) (

Λ0 − CPk−1C
T
)−1

, (4.8)

Pk = APk−1A
T +

(
G−APk−1C

T
)(

Λ0− CPk−1C
T
)−1(

G−APk−1C
T
)T

,(4.9)

where G is state to output covariance matrix and Λ0 is the output covariance matrix,

defined as

G = AΣCT + S, Λ0 = CΣCT + R,

where Σ is the state covariance matrix E
[
xkx

T
k

]
= Σ given by the solution of the

Lyapunov equation

Σ = AΣAT + Q.

In [1] it is shown and proved that the recursive KF formula (4.7 - 4.9) can be

rewritten into one single linear matrix equation as

x̂k =
(

Ak − ΩkΓk ∆d
k − ΩkH

d
k Ωk

)




x̂0

u0

...

uk−1

y0

...

yk−1




,

where

Ωk =
(
∆c

k − AkP0Γ
T
k

) (
Lk − ΓkP0Γ

T
k

)−1
.

The significance of KF matrix form is that it indicates how the Kalman filter

state estimate x̂k can be written as a linear combination of the past input and output

measurements u0, y0, . . . , uk−1, yk−1.
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This allows the definition of the state sequence that is recovered by 4SID methods

with X̂0 as initial states

X̂f =
(

x̂i x̂i+1 . . . x̂i+j−1

)

=
(

Ak − ΩiΓi ∆d
i − ΩiH

d
i Ωi

)



X̂0

Up

Yp




=
(

Ak − ΩiΓi

(
∆d

i − ΩiH
d
i Ωi

) ) (
X̂0

Wp

)
. (4.10)

This state sequence is generated by a bank of non-steady state Kalman filters, work-

ing in parallel on each of the columns of the block Hankel matrix of past inputs and

outputs Wp. As can be seen, each state is filtered only from the limited length of

past input/output information (i samples), which is contained in one column of Wp.

Therefore the initial state estimate

X̂0 =
(

x̂0
0 x̂0

1 x̂0
2 . . . x̂0

j−1

)

plays important role and advanced 4SID methods are shown to use nonzero initial

estimates. For example the described N4SID method uses

X̂0 = Xd
p /

Uf

Up, (4.11)

where Xd
p is the deterministic component of the state sequence matrix Xp.

One has to keep in mind, that this is only an interpretation of 4SID methods

from the Kalman filter point of view. For example the prior estimate (4.11) is

never computed in 4SID algorithm, but it can be shown that a bank of non-steady

state KF with this prior estimate and working with the input/output data from Wp

columns will give the same state sequence estimate as N4SID algorithm. The prior

estimate (4.11) can not be even explicitly computed, because for example Xd
p is of

course a priori unknown.

The major observation in the subspace algorithms is that the system matrices

A, B, C, D, Q, R and S do not have to be known to determine the state sequence

X̂f . It can be determined directly from the input/output data.

4.3 Instrumental Variable Methods Relation

Some 4SID methods can be interpreted to directly use the tools of Instrumental

variable methods (PI-MOESP, PO-MOESP), but in the others (N4SID, CVA), the

principles of IVMs are hidden. In this section, the methods will be compared from

IVMs point of view.

IVMs are traditionally used and well understood in PEM framework, the ex-

tension of IVMs to state space models is less obvious. It was shown in [8], that
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subspace-based methods can be viewed as one way of generalizing IVMs in a nu-

merically reliable way for SS model identification.

The IVM approach in MOESP methods was described in Section 3.9. All meth-

ods are summarized in the following table:

Method Instrumental Variable Oh estimate

PI-MOESP Up YfΠ
⊥
Uf

PO-MOESP

(
Up

Yp

)
(Yf/Wp) Π⊥

Uf

N4SID

(
Up

Yp

)
Yf /

Uf

Wp

PO-MOESP and N4SID methods use identical instruments, but different weight-

ing matrices [8]. The resulting subspace estimates should therefore have very similar

properties. However, the schemes for unravelling the system matrices in MOESP

and 4SID are quite different.

Writing both estimate of Oh in the similar notation

ON4SID = YfΠ
⊥
Uf

W T
p (WpΠ

⊥
Uf

W T
p )−1Wp,

OPO-MOESP = YfΠ
⊥
Uf

W T
p (WpΠ

⊥
Uf

W T
p )−1WpΠ

⊥
Uf

,

the difference is clear. It is only an extra projection Π⊥
Uf

in PO-MOESP estimate.

4.4 Notes

As it has been illustrated in this chapter, 4SID methods are not so distant from the

traditional approaches, as it may seem at the first sight. They should be viewed

from two different view points:

1. As implicit implementation of Kalman filter. More precisely as a bank of

non stationary Kalman filters, estimating each state separately from i (chosen

parameter) historical I/O data and certain prior estimate. The important

property is that the system parameters (A,B,C,D,Q,R,S) are a priori unknown

and it is still possible to estimate systems states, but without particular basis

selection. This property of KF is less known.

2. Second view point is that by using 4SID methods for identification, we will get

the model with the optimal predictions for 1 to h (chosen parameter) steps.

More precisely the sum of squares for the sum of 1 to h predictions steps will

be minimal among all linear models of the same dimension. In other words,

4SID methods can be seen as a very elegant way how to specify and solve a

problem of identifying a model, which is optimal for multi-step predictions.
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New Trends and Open Problems

In this chapter some recent advances will be shown to complete the state-of-the-art

of 4SID. Nowadays, there are several open or only partially solved problems:

• Efficient recursive 4SID algorithm,

• Closed-loop identification,

• Prior knowledge incorporation,

• Optimal choice of the design variables for the general algorithm (weight ma-

trices W1, W2),

• Consistency, convergence and error analysis.

Here we will treat the first two problems, because their solution is in our industrially

motivated interest and several notable advances in these topics has been recently

made. The third problem of prior knowledge incorporation seems also to be very

interesting and in the next chapter, we will share some ideas, we have about our

further research in this direction.

5.1 Recursive 4SID

The main 4SID methods (N4SID, PI/PO-MOESP, CVA) are dedicated for identi-

fication from off-line data. Their good properties are appreciated, but for the real

industrial applications, especially in the control engineering, the efficient on-line re-

cursive identification algorithm is necessary. Great effort was recently devoted to

this field with many interesting results, but it seems that the goal is still far from

reached.

The off-line 4SID algorithms are directly unusable for on-line identification due

to the computationally burdensome steps such as singular value decomposition of

large matrices, which is the main bottleneck in recursification. Therefore it was

necessary to find SVD alternative algorithms in order to apply the subspace concept

in a recursive framework.

37
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The first attempts [18, 19], similarly compresses given I/O data recursively into

a matrix with a fixed size. An estimate of the extended observability matrix is not

updated directly, but in order to obtain the estimate, it is necessary to perform SVD

on the data-compressed matrix at every update step.

The recent advances [10, 9] took inspiration mainly from the methods used in

the field of Array Signal Processing, where a similar problem of Recursive Subspace

Tracking can be found and it is solved by Propagator method.

Recursive Subspace Tracking

A similar problem from the sensor array signal processing is following:

Assume we have an array with multiple antennas in configuration, where each

antenna has different directional sensitivity. The array is receiving several signals

as planar waveforms coming from the different directions (the distance between

antennas can be neglected). The considered problem is to recursively determine:

1. the number of incoming signals,

2. the direction of arrival for each signal,

3. reconstruct each waveform.

Mathematically the output from the general sensor array can be described as

follows

z(t) = Γ(θ)s(t) + b(t), (5.1)

where z is the output of nz sensors (antennas), s is the vector of ns signal waveforms

an b is the additive noise. The matrix Γ(θ) is the array propagation matrix. Each

column Γ(θ) =
(

a(θ1) . . . a(θns)
)

represents the sensitivity of each sensor to the

respective waveform and it is a function of the direction of waveform arrival.

We can see that the problem 1 corresponds to the model order determination,

problem 2 is related to system modelling and problem 3 is Kalman filtering.

When studying the main techniques developed in both fields, it is interesting to

notice that the mathematical problem is the same: to track some eigencomponents

of particular matrices by adapting specific subspaces with the last observation. In

array signal processing, notable algorithms have been developed to avoid the use of

eigenvalue decomposition. Thus, it seems to be interesting to adapt some of these

SVD alternatives to recursive subspace identification.

The first step is to rewrite a state space model (3.1–3.2) into an equivalent form

to (5.1). Before it is necessary to introduce a temporal window

y+
f (t) =

(
yT (t) . . . yT (t + f − 1)

)T ∈ Rlf×1.

Then the state space model can be rewritten as
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y+
f (t) = Γfx(t) + Hd

f u+
f (t) + Hs

fe
+
f (t)︸ ︷︷ ︸

=b+f (t)

.

The connection between subspace identification and array signal processing becomes

apparent by writing

z+
f (t) = y+

f (t)−Hd
f u+

f (t) = Γfx(t) + b+
f (t).

The recursive algorithm is then made of two stages:

1. The update of the ”observation vector” z+
f from the noisy input/output mea-

surements

z+
f (t) = y+

f (t)−Hd
f u+

f (t).

The matrix Hd
f is unknown at time t since it is constructed from SS model

parameters. However, the observation vector z+
f (t) can be obtained by the

projections.

2. The estimation of a basis of Γf from the observation vector

z+
f (t) = Γfx(t) + b+

f (t). (5.2)

This step is carried out by Propagator method.

Propagator method

Assume that the system is observable. Then the extended observability matrix

Γ′f ∈ Rlf×n with lf > n, can be reorganized to Γf containing n linearly independent

vectors in the first rows, forming a submatrix Γf1 . Then, the complement Γf2 of Γf1

can be epxressed as a linear combination of this submatrix. So, there is a unique

linear operator Pf ∈ Rn×(fl−n) named propagator defined as

Γf2 = P T
f Γf2 .

It can be verified that

Γf =

(
Γf1

Γf2

)
=

(
In

P T
f

)
Γf1 .

Since rank
(
Γif

)
= n

col (Γf ) = col

(
In

P T
f

)
.

This last expression implies that it is possible to get an expression of the observability

matrix in a particular basis by determining the propagator. This operator can be

estimated from the equation (5.2). After having applied a data reorganization so
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that the first n rows of Γf are linearly independent, the following partition can be

introduced

z+
f (t) =

(
z+

f1
(t)

z+
f2

(t)

)
=

(
In

P T
f

)
Γf1x(t) +

(
b+
f1

b+
f2

)
.

In the noise free case it is easy to show that

z+
f2

= P T
f z+

f1
,

but in the presence of noise, the equality is lost. However, an estimate of P T
f can

be obtained by minimizing the following cost function

J(P T
f ) = E

∥∥z+
f2
− P T

f z+
f1

∥∥2
,

which leads to LS solution. Unfortunately this solution is biased even if the noise

is spatially and temporally white. Better solutions, circumventing this difficulty,

based on the correlations are proposed in [10].

Subspace prediction for time-varying systems

A new interesting 4SID algorithm for predicting linear time-varying systems has

been recently proposed in [9]. It uses a concept of principal angles [14] between

subspaces, spanned by the past and current extended observability matrix.

The future subspace is then predicted by rotating the current subspace in the

geometrical sense by the angles obtained from an extrapolation of the principal

angles development trend.

The proposed algorithm is recursive and it is suitable for identifying slowly time-

varying linear systems. Most existing systems show time-varying and/or nonlinear

behavior, and the nonlinear systems are sometimes treated as high order linear time-

varying systems from the practical point of view. Therefore this algorithm could be

used with an advantage for adaptive controllers or MPC.

5.2 Closed-loop Identification

The closed-loop identification is of special interest for a large number of engineer-

ing applications. For safety reasons or quality restrictions, it is desirable that the

identification experiments are carried out under the closed-loop conditions. The

fundamental problem with closed-loop data is the correlation between the unmea-

surable disturbances and the input caused by an effort of the controller to eliminate

the influence of disturbances [7].

It is well known, that the most traditional 4SID methods (N4SID, MOESP,

CVA) are not applicable to the systems operating under the closed-loop conditions

without special treatments [11]. Most of them can not provide consistent estimates

from the closed-loop I/O data.



5.2. CLOSED-LOOP IDENTIFICATION 41

However, the recent advances have shown that the modified 4SID algorithms can

work even under the closed-loop conditions [11, 12, 20]. The names of interested

people, such as Lennart Ljung show, that this research direction is promising. There

are recently two main approaches, which will be only sketched here:

Innovation Estimation Method (IEM) [20, 11] This method pre-estimates the

innovations e(t) and then use them as known, to decouple the noise and the

controlled input. The pre-estimation is usually done by a high order ARX or by

decomposing matrix equation (3.11) into i block rows, and use the estimated

innovations from the previous block rows to further estimate model parameters

of the next block row sequentially.

The basic idea is that under certain assumptions, the consistency estima-

tion with 4SID methods can be achieved if the innovation sequence is already

known.

Whitening Filter Approach (WFA) This approach claims not to require any ex-

tra data and not to be sensible to the instability in the deterministic subsystem

[12]. It is based on the idea of looking at the inverse system generating the

innovations e(t) from the joint process y(t) and u(t), namely the ”whitening

filter realization”

x(t + 1) = Āx(t) + Bu(t) + Ky(t),

e(t) = −Cx(t)−Du(y) + y(t),

where Ā = A − KC and B̄ = B − KD. The state x(t) of this model is the

same as for the innovation model (3.1–3.2), therefore both models have the

same state space row(Xf ). The whitening filter can be rewritten into single

equation matrix form

Yf = Γ̄fXk + H̄fUf + ḠfYf + Ef .

The next difference to the standard algorithms is that the projections are car-

ried out on the model row by row (multi-stage projections). No pre-estimation

is involved, but the projections have to be done block-row wise to decouple

noise from control input.



Chapter 6

Our Contribution and Future

Research Direction

The reason of our interest in 4SID methods is their ability to identify large MIMO

systems without structural parametrization, their good numerical properties, and

because they also proved [23] to be beneficial in the industrially successful model

predictive control (MPC).

6.1 Our Contribution

So far, our main contribution to the field of Subspace identification was that 4SID

methods can be interpreted to identify the model as an optimal multi-step predictor

[21]. Our contribution is that we have mathematically derived that oblique projec-

tions used in Subspace identification can be obtained by minimizing the multi-step

prediction error criterium (4.4). Some results were shown in section 4.1. This also

showed 4SID methods in the well known framework of the least-squares and proved,

that even 4SID methods, with their geometrical identification approach, hide inside

a criterion, which is minimized during the identification process. As we have shown

this criterion was not expected to exist, as it was stated in some recent articles.

We are also very interested in the recursification, because it is an essential as-

sumption for the identification methods to be used in on-line industrial application.

Several algorithms have been proposed. The best one seems to be the subspace

tracking by propagator methods. Recusrification of 4SID would allow to create

adaptive MPC.

6.2 Prior knowledge incorporation

Our derivation of 4SID methods in the least-squares framework, showed new op-

portunity to incorporate prior knowledge, which is a persistent problem of 4SID

methods and as far as we know, no solution has been proposed yet.

42
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To incorporate prior knowledge into the algorithm of 4SID identification would

be very beneficial. So far, 4SID methods have black-box approach to the identified

system. This is good for ’automatic identification’, where no additional information

about the identified system is available, but the I/O data may be corrupted and the

pure black-box approach may lead to a model, which is significantly deviated from

the real system.

However, there is often a priori information, which should be exploited to increase

the quality of the identification and to ensure that the identified model is close to

some expectations (lies within some boundaries). The following list shows some a

priori information, which would be useful to incorporated:

• known steady gain,

• known time constants range of step response,

• enforcing impulse (step) response smoothness - by specifying prior values of

impulse response second differences (useful to keep the model from fitting on

the high-frequency noise in data),

• Limit the step response to a funnel shaped region (Figure 6.1). This would

allow to constrain the time constants, model gain, over-shots and under-shots,

which would be very useful and versatile.

t

A

Amax
A0

0.9 A0

tmin tmax

Figure 6.1: A priory information as a funnel limiting model step response.

To incorporate prior information, we expect, that we will be able to minimize

the multi-step criterion

min
Lw,Hd

i

∥∥∥Yf − Ỹf

∥∥∥
2

F
= min

Lw,Hd
i

∥∥∥∥Yf −
(

Lw Hd
i

) (
Wp

Uf

)∥∥∥∥
2

F

, (6.1)

while considering prior knowledge. This will involve to combine information from

the I/O measurements and a priori information, which can be done by covariance

matrix shaping and recursive least squares.

The expected main problems will be
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1. The reformulation of some types of a priori information described above to

the prior information on the parameters, which are optimized in the multi-

step criterion (6.1), i.e. Lw and Hd
i or maybe only on the matrix Oh. We hope

to take advantage of the fact, that these parameters are not dependent on the

state space basis selection, because they are related to the impulse responses

from the states and the inputs.

2. The recursification - we expect that the least squares approach would allow

straightforward recursification of 4SID algorithm. The stress would be on the

combination of the information from the input/output data and from a priori

information on the model which have to be combined in each step.

The preliminary idea of the complete recursive algorithm is following:

1. Transformation of a priori information about the identified system to the co-

variance matrices of Lw and Hd
i , which are minimized in the criterion (and

maybe to their prior mean values).

2. Recursive least squares minimization of (6.1) while combining the information

from the previous step with the new information from the measured data and

a priori information. Some type of forgetting should be incorporated, but we

have to assure that a priori information about the system is not completely

forgotten. Usual recursive minimization is possible, because the equation

Yf =
(

Lw Hd
i

) (
Wp

Uf

)
+ ε,

is linear in the parameters Lw and Hd
i , and the sizes of Lw and Hd

i are inde-

pendent on the amount of measured data.

3. Finally Lw can be used to estimate the system order and to estimate sys-

tem matrices A and C, because it has the same column space as extended

observability matrix Γi, since

LwWp = ΓiXf .

This fact should be exploited by SVD or Propagator method. Matrices B and

D can be for example obtained from Hd
i .

Note that the matrix Hd
i , with the deterministic impulse response in the Toeplitz

form, has lower triangular form (3.5). Obtaining Hd
i with large nonzero entries above

the main diagonal means badly conditioned I/O data.



Abbreviations

4SID Subspace State Space System Identification

ARX Auto-Regressive with eXogenous inputs

ARMAX Auto-Regressive Moving Average with eXogenous inputs

CVA Canonical Variate Analysis

IV Instrumental Variable

LTI Linear Time Invariant

LS Least Squares

IEM Innovation Estimation Method

IVM Instrumental Variable Methods

KF Kalman Filter

LHS Left Hand Side

MOESP Multivariable Output Error State sPace

MPC Model Predictive Control

N4SID Numerical Subspace State Space System Identification

PEM Prediction Error Methods

PI-MOESP Past Inputs Multivariable Output Error State sPace

PO-MOESP Past Outputs Multivariable Output Error State sPace

RHS Right Hand Side

SS State Space

TLS Total Least Squares

WFA Whitening Filter Approach
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