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Abstract— Integrating prior information into subspace iden-  information incorporation is allowed by putting 4SID into
tification methods improves their usability for industrial data, Bayesian framework.

where experimental data by them self are in many cases  The pnaner is organized as follows. First the notation is

not good enough to give a proper model. The identification . o . e
experiments in the industrial environment are limited by the established, next the unified subspace identification efgor

economical and safety reasons. However, in practical appli- IS Shown and the optimality criterion is briefly derived. Mex
cations, there is often strong prior information about the the algorithm incorporating prior information is proposed
identified system, which can be exploited in the identification. and different types of useful prior information are shown.

The presented algorithm formulates subspace identification ; ; ; it
as a multi-step predictor optimization. Reformulation to the The paper is concluded with practical application of the

Bayesian framework allows to incorporate prior information. algorithm.
The paper is completed with the application to the experimental II. NOTATION AND OVERVIEW
data from the oil burning steam boiler with the rated power )
of 100 MW. The first idea in 4SID methods, is to combine a state
space model and a set of /O data iatgingle linear matrix
I. INTRODUCTION equation, relating the signal matrices with the parameters

) matrices Prior to this, some definitions are necessary.
The good properties of Subspace State Space System

IDentification (4SID) have shown their usability in the isdu A. State Space Model

trial applications [1]. Mainly their robustness and aliltb In this paper a state space model of stochastic system in
identify MIMO (Multiple Inputs Multiple Outputs) systems the innovation form [3] is considered

with the same complexity as for SISO (Single Input Single

Output) systems without the need for extensive structural Tet1 = Awp+ Bug + Kex, @)
parametrization (as for example for MIMO ARX models). yr = Cxp + Dug + e, (2)

However, the experimental input/output data by them Se%here ue € R™ is the m-dimensional inputz, € R™
are in many cases not good enough to give a proper qu@'the n-dimensional statey, € R'! is the I-dimensional
This may be caused by the fact, that the |den'uf|cat|0|autput K is the steady state Kalman gain ande R! is an

experiments in the industrial environment are limited by thunknown innovation withtZ [e;] = 0 and covariance matrix

economical and safety reasons, which results into 1/O da@ [ekeT] - R
without proper excitation and with strong noise burden. The " % “

black-box identification approach, such as in 4SID, relying. Signal Related Matrices

only on the measured data, may fail in such cases. In 4SID algorithms, all signals (the inputs, the outputs
However, in the practical applications there is often sfronand the noises) are arranged into Hankel matrices. Assume

prior information about the system, which should be exa known set of input/output data samples,y, for k €

ploited by the identification algorithm to significantly im- (0,1,...,i+h+j—2). These samples can be arranged

prove the identified model quality. Such information shoulgnto block Hankel matrices withi and & block rows and

be: an approximate knowledge of time constants, the knowncolumns as follows

static gains, an integrating character etc. Incorporapirigr

information into 4SID methods will be addressed in this to U e Uyl

article. U1 uz .. i
The presented algorithm uses the formulation of subspace : : . :

identification algorithm as a multi-step predictor optiaiz U, Uj_1 Ui . Ujpj—2

tion. The non-caus_allty and over—parametnzauon are |el|m Us) U Wikl - Uipj—1

nated by a convenient problem reformulation [2]. The prior Uip1 — Uiio Uitj
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data samples. The distinction between the past and theefutur I11. 4SID IDENTIFICATION
is important for the predictor and Kalman filter concept used Thjs section recalls the basic unified 4SID algorithm

in 4SID. o proposed by Overschee and De Moore [4].
The values of the coefficientsand h are usually selected

slightly larger than the upper bound of expected systemrord8. Problem formulation
and the coefficienj = s —i — h+ 1, wheres is the number  The solved problem can be formulated as follows:

of available data samples. Givens samples of the input sequente, . .., us_1 } and
For the outputgy, and the noises;, similar Hankel ma- the output sequencgyo, ..., ys—1}-
tricesY,, Yy andE;, Ey can be constructed. A combination Estimatethe parameters of the state space model in the
of U, andY, denoted as¥, is used as a regressor innovation form (1,2), i.e. estimate the system orgdeand
v obtain the parametersi, B, C, D, K up to within a
- P o . !
W, = ( U ) similarity transformation and covariance matr¥. of the
P noiseey,.
The system state sequence is also used in a matrix form with
the following structure B. Unified 4SID algorithm
First step is the computation of the oblique projection [5].
Xp=(rorr . @icn), Xp=@izip1 - Tiejo1) g ron space of future outpul§ is projected on the row
C. Parameters Related Matrices space of past datd’, along the row space of future inputs
The extended observability matrix, is an extension of Uy
observability matrix for a number of block rows higher than On =Yy | Wp. ()

U .
the system ordek > n !

Having obtained the matrix);,, the rest of the algorithm

CC " uses the fact, thad,, can be factorized as
'y = : € R, Oy =Xy,
CAF-T Exploiting this fact the weighted matri®,, is factorized by

. . the singular value decomposition (SVD
Similarly the reverse extended controllability matux{ for g P ( )

the deterministic input W10,Wy =USVT,

Af = ( A1 A*2B ... B )eR™™ The weightsW; and W, allow for tuning the algorithm,
i.e. selecting a particular method (N4SID, MOESP, CVA).
The ordern of the system is determined by inspecting the
singular values i and used to partitio/, ¥ and V7 to

The block Toeplitz matrixH composed from the impulse
responses elemen{gy, ..., gx—1}

90 0o ... 0 Uy=U(1:n),% =%1:n,1:n)and VI =V(,1:
T : .
0 g1 g ... O T n)* (Matlab like notation). Then
Hp = ) . i ) eR N ) ) 12
: : I r, = W U,%/",
9k—1 Gk—2 --- 9o Xy = I‘L(’)h.

D. Single Equation Formulation of State Space Model . B
) ] _ From the knowledge of the estimated state sequeficand
As already mentioned before, the starting point of 4S|E?nput/output data, the state space model parameter3, C

methods is a reformulation of the recursive state spacg,q p can be computed by the least squares or total least
innovation model (1,2) and a set of experimental data iquuares from

one single matrix equation, sometimes denoted as extended

state space model. This is done by recursive substitution of ( X¢+1 ) _ < A B > < X; ) te
(1) into (2) Yi ¢ D Ui ’
Yy, = TI.X, —i-H-dUp + H'E, 4) whereY; is first block row ofY; and similarlyU;. Finally
: L the stochastic properties can be estimated from the rdsidua
Y, = TwX;+HU, + HiE;, ®) ) prop
X; = A'X,+ A%, + ASE,. (6) Re = X, where [ 211 X2 ) _
P iYp i p K =Sy, Sor T cov (€).

Equations (4) and (5) are similarly defining outputs as

a linear combination of previous states by the extendedV: 4SID AS MULTI-STEP OPTIMAL PREDICTOR
observability matrixI's (response from the states) and a This section recalls, that optimality criterion of 4SID
linear combination of previous inputs and noises by theils a minimization of multi-step predictions error based on
respective impulse responséf’ and H:. Equation (6) is input/output dataAnd that the optimal solution leads to the
relating the future and the past states under the influence aflique projection used as a corner stone of unified 4SID
the inputs and the noises. algorithm [6].



A. Multi-step predictor C. Enforcing causality and parameters uniqueness

~ Assume the state space model is known and at time The parameter matrixH; obtained from the oblique
i, a system stater; and a sequence of future inputsprojection (7) may not have the block Toeplitz structurehwit
{ui, ui1, ..., uipn—1} are also known. The output predic- zeros above the main diagonal according to (3), which leads
tions for 0 to i — 1 steps ahead can be estimated as (th@ predictor non-causality. A solution was proposed in [2].
innovations are replaced by their mean valtige,] = 0) To enforce the causality and the parameters uniqueness it
n ws applies a formula for the vectorization of matrix product to
K3 1 9)
: =TIpx; + H}Cf : (
Yith—1 Uith—1 vec(Yy) = (( W) UfT )@ I)ved( L, H{))

Th.e out.put predictions fof su.bsequent initial _states can bean d uses the fact, that it is possible to fiNdthat
written in a compact form using Hankel matrices

Yy =ThX; + HU;, (8) vec(( L, H{))= N( g;” ) :
where every column offf represents a sequence of linear

output predictions based on the initial state and a sequen®g€re
of inputs from the corresponding columns &f; and Uy.
The statesX ¢, unknown in the process of identification, can by =vec(Ly), g=vec(( go --- gn-1))-

be estimated from the past dai, as [6] A set of equations equivalent to (9) with enforcéﬂ,‘f

Ry = (APTT (A4 — APTTHEY) <§p> _w, structure is then

w

p
14
_ T T w
Using the estimated states, the predictor (9) becomes vec(Yy) = (W, Uj )@I)N ( g > SN XY
v d y z ——
Yf :Lpr+Hth, (9) 0
whereY; is the output linear estimate af; using a finite V. INCORPORATING PRIOR INFORMAION

available input/output data set ) ) L .
A natural tool for working with prior information is

B. Multi-step predictions optimization Bayesian framework [7]. It allows to combine prior infor-

Consider the optimal multi-step predictions on a given sdpation with information from the experimental data.
of input/output data. That is to find the parameter matrices In order to use Bayesian inference, there have to be the
L, and H{ of (9) to optimally predict the outputs. The prior probability density function (p.d.f.) of parametérand
quality of the predictions will be measured by a Frobeniu#e likelihood functioni(¢|y) of parameters conditioned by
norm of prediction errors the experimental datg.
The prior information has to be transformed into the prior

min Yy — f/fH = min ||Y;— (Lw H,‘f) <2/P> ) p.d.f. of parameters. Assuming a normal distribution itl wil
Lw,Hj, F Lu,Hj f (15) be described as
. _ T T . . ~
Denot|pgD = ( WP Uy )T a;nd assumlng_ a persistent Porior(0) = N (o, Py)
excitation, the optimal,, and H;; can be obtained as

N T 7 —1 and real-world prior information will be transformed inig
(Lo Hj)=YD'(DDY) . and P, by a covariance matrix shaping.
Using the previous result, the estimated zero-input state The likelihood functioni(6|y) is determined by the re-

responselL,, W, can be written as arranged multi-step predictor model (11), with a simple
/T structure

LW, = YfDT[(DDT) }( ;;:;») Wy, r=1i(l+m), Z0 =y +e, e ~N(0,R).

which is the expression for the oblique projection The posterior p.d.f of can be found from Bayesian rule

L, W, = YfU/ Wp,

!

Ppost (0) X l(0|y)pprior (0) .

showing the equivalency between the oblique projectiopor our chosem,...(#) andi(6]y) it leads to the linear mean
in 4SID and an optimal multi-step predictor parametersquare error estimate (LMS)

estimation.

A 6 = 0y+P2ZT (ZPZT + R)™ (y — Z0o)
O; =T, X =Y; | W, = LoW,. _ )
Fe l{f P P Py = PRy—PRZ%(ZP,ZT +R) ' ZR,



A. Covariance matrix shaping C. Known ratio between static gains

To describe prior information bﬁo and P,, there is an Assume that the particular gain values for two inputs
instrument usually denoted as a covariance matrix shapifg(r1) — y(¢) andu(pz2) — y(q)) are unknown, but their
[8]. The idea is to reduce the uncertainty of the parametefglative ratio is well known (arises in practical applicais)

in the directions with well known prior information. he1
Assume that there is strong prior information on the Z 9i(q,p1)
parameters in the direction The corresponding covariance K=f(0)= ;:_‘17 = const (15)
matrix P should have small eigenvaldg < 1 in r direction S gi(q,p2)
and large other eigenvalueg > 1 i=0
T T This constraint can be represented &y given by (13)
rr rr . . .
P=o01——+o00 (I — T) satisfying (15) withw as
rer rer
_ _ _ K ... k=pi+(q—1m,
The following sections show some examplesrofietermi- wk)=4 1 ... k=ps+(qg—1)m,
nation for some different types of prior information. The 0 ... otherwise
covariance matrice®,; describing different prior information
are combined to one covariance P as and P, with small eigenvalue in the direction of(¢)

gradient (14), which for the chosen values@gf simplifies

p-1— Z});l. to

r = Vf(0) = (01xoni | vT ... 2T ) r
B. Known static gain h times ’
Assume a known static gaiR’ from the p-th input to the where
g-th outputu(p) — y(q) 1 ... k=p+(qg—1m,
bl vk)=¢ -K ... k=ps+(qg—1)m,
K = f(0) = Z gi(q,p) = const (12) 0 ... otherwise.
=0

D. Ensuring smoothness of step response
This affine parameters constraint can be represented by anyone of the natural request to the identified impulse or

0o satisfying (12) such as step response is the smoothness. It means to suppress the
o fitting of high-frequency disturbances. The smoothnes$ wil
0o =( 15 | ¢* )T = KXo w" oowh ) be shown for SISO system. The idea is that the smooth
_h%es—’ ’impulse response has small second order differences
(13)
wherew € R™ A%gi = giva — 29141+ 9i — 0.
wik) = 1 ... k=p+(g—Dm, The differences can be written as
0 ... otherwise 1
_ _ _ o -2 1
and P, with small eigenvalue in the direction of (9) 1 -2 1 g = Dg— 0.
gradient
roo= VO =(0 | wT ... wl )7 14 1 =21
N — p— ) . . H
h times Covariance matrix, should be chosen so that coldg} is

) ) sufficiently small
and large other eigenvalues. This ensures, that the exper-

imental data will change the parameter values freely in cov{Dg} = DPgDT ~oil, o, —0,
the directions perpendicular to and will have only small
influence to the static gain (depending on the ratiegfry).  9ving Fo as
The concept can be used to any prior information describ- oolanixani 0
able as an affine combination of parameters Py = ( 0 02D~1DT ) 5

f0) = Z k(1)0(i) = ¢ wherec? is the tuning parameter enforcing the smoothness
for small values. The smooth initial estimate &f can be
or generalized to a nonlinear function for a good prioobtained from the impulse response of the first order model
estimate off,. or simply asf, = 0.



Fuel -> dp/dt 10" Steam Demand -> dp/dt
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Fig. 1. Step responses of the models identified by 4SID withr pniformation (n=2), Process Identification (numerical PEM2xP1D structure), N4SID
(n=2) and PEM on ARMAX model (2221).

VI. STATE SPACE MODEL REALIZATION WITH PRIOR rest of Ho & Kalman realization algorithm can be used to get
INFORMATION the state space model parametéfsB’,C’,D’. Using Matlab

Estimating the state space model parameters from ti{ke notation
impulse response sequence is traditionally done by clssic;r _ iy 7
Ho & Kalman realization theory [9]. However, LMS gives ’
: . y Bl . =9 = U(,1:n)2(1:n,1:n)Y2
an estimate of the impulse response= {jo,...,Gn—1} 12 "
and itscovariance matrixP (containing the non-diagonal E(1:in,1:in) "V (1:in,:)",
values). The information contained in the covariance matridA’ = T(1:end —1,:)\['(l +1: end,:),
is important for_a proper sFate r_ealization and must bey _ A(l:m,1:n), C'=T0:1,1:n), D = go.
used in the realization algorithm in order pryeserve the

supplied prior informationand to respect the experimental To incorporate the non-diagonal covariance elements the
realization problem can be formulated in the sense of con-

data quality. _ _ can
First consider the non-diagonal values B to be zero. Strained maximum likelihood as
The solution is similar to Ho and Kalman realization. Con- . A T (A
struct a Hankel matrix from the impulse responses A,%l,l(?,p (G - G) e (G a G) ’ (17
g G2 - Gp where
o | 2 o6 : . G=(D CB CAB ... CAN72B).

This optimization is nonlinear and the numerical solutien i
likely to converge to the local extreme. Practical experéen

Gp 0 ot Onet
H H / ! / H
Then instead of usual lower rank approximation by SVD, the that when started from the solutioff,5",C",D" given by

Weighted Lower Rank: Approximation (WLRA) has to be Scalar WLRA, the global extreme is almost always reached
used and the state space model paramet&/B,C,D are found.

T = arng%i/n |W.s (T =T, (16) VIl. ALGORITHM BRIEF SUMMARY
rank7’) = n The following steps briefly summarize the steps of pro-

where .x is an element-wise multiplication and” are the posed algorithm.

timates ofdy and Py. Several types of prior information

Pe(1,1)7t Pg(2,2)7t ... Pg(p,p)? can be mixed together.
W Pe(2,2)"0 Ps(3,3)70 ... : 2) E:or)npute the posterior parameter estimates, from
- . . 12).
: . : - : ) 3) Using WLRA and Ho & Kalman realization find the
Pa(p,p) o+ Pg(h—1,h-1) first model parameter estimat¥, B’, C’, D'.

The (16) can be solved by the algorithm described in [10]. 4) Re-optimizeA’, B’, C’, D" by (17) to get the state
ObtainingT” as a weighted rank-approximation ofl", the space model parameters B, C, D.



VIIl. PRACTICAL APPLICATION

The algorithm was applied to the experimental data from*!
the oil firing steam boiler with the rated effective power of
100 MW. The goal was to identify a model relating the fuel [2]
flow and the steam demand to the boiler pressure. This is

known identification problem [11]. Both inputs are typigall

strongly collinear, because technological limitations ra

K]

allow independent excitation of each input. Several priorl4

information were used:

« Known relative gain between fuel flows drum pressure
and steam demane- drum pressure. The value was [g

(5]

obtained from the steady state boiler operation data by

total least squares (Figure 2).
« Strictly dynamic characte(0) = (0 0).
« Step responses smoothness.

The model identified by 4SID with prior information gives

(7]

(8]

the best model fit and is the only one to correspond with

known prior information (Figure 1).

Fuel to Steam Ratio = 12.0839 (using TLS
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Fig. 2. Estimating the fuel flow to steam flow ratio by total lesguares.

IX. CONCLUSION

(9]

The proposed algorithm incorporates prior information
into subspace methods. It helps to improve the identifioatio

results in the practical applications, where prior infotiom

is often available and the experimental data may not be

optimal. Moreover the algorithm allows for the recursifi-
cation, because the parametérdave fixed size and new

measurements only append rows to the regre&sor
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