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Abstract— Integrating prior information into subspace iden-
tification methods improves their usability for industrial data,
where experimental data by them self are in many cases
not good enough to give a proper model. The identification
experiments in the industrial environment are limited by the
economical and safety reasons. However, in practical appli-
cations, there is often strong prior information about the
identified system, which can be exploited in the identification.
The presented algorithm formulates subspace identification
as a multi-step predictor optimization. Reformulation to the
Bayesian framework allows to incorporate prior information.
The paper is completed with the application to the experimental
data from the oil burning steam boiler with the rated power
of 100 MW.

I. INTRODUCTION

The good properties of Subspace State Space System
IDentification (4SID) have shown their usability in the indus-
trial applications [1]. Mainly their robustness and ability to
identify MIMO (Multiple Inputs Multiple Outputs) systems
with the same complexity as for SISO (Single Input Single
Output) systems without the need for extensive structural
parametrization (as for example for MIMO ARX models).

However, the experimental input/output data by them self
are in many cases not good enough to give a proper model.
This may be caused by the fact, that the identification
experiments in the industrial environment are limited by the
economical and safety reasons, which results into I/O data
without proper excitation and with strong noise burden. The
black-box identification approach, such as in 4SID, relying
only on the measured data, may fail in such cases.

However, in the practical applications there is often strong
prior information about the system, which should be ex-
ploited by the identification algorithm to significantly im-
prove the identified model quality. Such information should
be: an approximate knowledge of time constants, the known
static gains, an integrating character etc. Incorporatingprior
information into 4SID methods will be addressed in this
article.

The presented algorithm uses the formulation of subspace
identification algorithm as a multi-step predictor optimiza-
tion. The non-causality and over-parametrization are elimi-
nated by a convenient problem reformulation [2]. The prior
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information incorporation is allowed by putting 4SID into
Bayesian framework.

The paper is organized as follows. First the notation is
established, next the unified subspace identification algorithm
is shown and the optimality criterion is briefly derived. Next,
the algorithm incorporating prior information is proposed
and different types of useful prior information are shown.
The paper is concluded with practical application of the
algorithm.

II. NOTATION AND OVERVIEW

The first idea in 4SID methods, is to combine a state
space model and a set of I/O data intoa single linear matrix
equation, relating the signal matrices with the parameters
matrices. Prior to this, some definitions are necessary.

A. State Space Model

In this paper a state space model of stochastic system in
the innovation form [3] is considered

xk+1 = Axk + Buk + Kek, (1)

yk = Cxk + Duk + ek, (2)

where uk ∈ R
m is the m-dimensional input,xk ∈ R

n

is the n-dimensional state,yk ∈ R
l is the l-dimensional

output,K is the steady state Kalman gain andek ∈ R
l is an

unknown innovation withE [ek] = 0 and covariance matrix
E

[
ekeT

k

]
= Re.

B. Signal Related Matrices

In 4SID algorithms, all signals (the inputs, the outputs
and the noises) are arranged into Hankel matrices. Assume
a known set of input/output data samplesuk,yk for k ∈
〈0, 1, . . . , i + h + j − 2〉. These samples can be arranged
into block Hankel matrices withi and h block rows and
j columns as follows

(
Up

Uf

)
=




u0 u1 . . . uj−1

u1 u2 . . . uj

...
...

.. .
...

ui−1 ui . . . ui+j−2

ui ui+1 . . . ui+j−1

ui+1 ui+2 . . . ui+j

...
...

.. .
...

ui+h−1 ui+h . . . ui+h+j−2




whereUp ∈ R
im×j is the matrix of past inputs andUf ∈

R
hm×j is the matrix of future inputs. Although most data

samples can be found in both matrices, the corresponding
columns ofUp andUf are subsequent without any common



data samples. The distinction between the past and the future
is important for the predictor and Kalman filter concept used
in 4SID.

The values of the coefficientsi andh are usually selected
slightly larger than the upper bound of expected system order
and the coefficientj = s− i−h + 1, wheres is the number
of available data samples.

For the outputsyk and the noisesek similar Hankel ma-
tricesYp, Yf andEp, Ef can be constructed. A combination
of Up andYp denoted asWp is used as a regressor

Wp =

(
Yp

Up

)

The system state sequence is also used in a matrix form with
the following structure

Xp = (x0 x1 . . . xi−1) , Xf = (xi xi+1 . . . xi+j−1) .

C. Parameters Related Matrices

The extended observability matrixΓk is an extension of
observability matrix for a number of block rows higher than
the system orderk ≥ n

Γk =




C
CA

...
CAk−1


 ∈ R

kl×n.

Similarly the reverse extended controllability matrix∆d
k for

the deterministic input

∆d
k =

(
Ak−1B Ak−2B . . . B

)
∈ R

n×km.

The block Toeplitz matrixHd
k composed from the impulse

responses elements{g0, . . . , gk−1}

Hd
k =




g0 0 . . . 0
g1 g0 . . . 0
...

...
. . .

...
gk−1 gk−2 . . . g0


 ∈ R

kl×km. (3)

D. Single Equation Formulation of State Space Model

As already mentioned before, the starting point of 4SID
methods is a reformulation of the recursive state space
innovation model (1,2) and a set of experimental data into
one single matrix equation, sometimes denoted as extended
state space model. This is done by recursive substitution of
(1) into (2)

Yp = ΓiXp + Hd
i Up + Hs

i Ep, (4)

Yf = ΓhXf + Hd
hUf + Hs

hEf , (5)

Xf = AiXp + ∆d
i Up + ∆s

i Ep. (6)

Equations (4) and (5) are similarly defining outputs as
a linear combination of previous states by the extended
observability matrixΓ• (response from the states) and a
linear combination of previous inputs and noises by their
respective impulse responsesHd

• and Hs
• . Equation (6) is

relating the future and the past states under the influence of
the inputs and the noises.

III. 4SID IDENTIFICATION

This section recalls the basic unified 4SID algorithm
proposed by Overschee and De Moore [4].

A. Problem formulation

The solved problem can be formulated as follows:
Givens samples of the input sequence{u0, . . . , us−1} and

the output sequence{y0, . . . , ys−1}.
Estimatethe parameters of the state space model in the

innovation form (1,2), i.e. estimate the system ordern and
obtain the parametersA, B, C, D, K up to within a
similarity transformation and covariance matrixRe of the
noiseek.

B. Unified 4SID algorithm

First step is the computation of the oblique projection [5].
The row space of future outputsYf is projected on the row
space of past dataWp along the row space of future inputs
Uf

Oh = Yf /
Uf

Wp. (7)

Having obtained the matrixOh, the rest of the algorithm
uses the fact, thatOh can be factorized as

Oh = ΓhX̂f ,

Exploiting this fact the weighted matrixOh is factorized by
the singular value decomposition (SVD)

W1OhW2 = UΣV T .

The weightsW1 and W2 allow for tuning the algorithm,
i.e. selecting a particular method (N4SID, MOESP, CVA).
The ordern of the system is determined by inspecting the
singular values inΣ and used to partitionU , Σ andV T to
U1 = U(:, 1 : n), Σ1 = Σ(1 : n, 1 : n) and V T

1 = V (:, 1 :
n)T (Matlab like notation). Then

Γh = W−1
1 U1Σ

1/2
1 ,

X̂f = Γ†
hOh.

From the knowledge of the estimated state sequenceX̂f and
input/output data, the state space model parametersA, B, C
and D can be computed by the least squares or total least
squares from

(
X̂i+1

Yi

)
=

(
A B
C D

)(
X̂i

Ui

)
+ ε,

whereYi is first block row ofYf and similarlyUi. Finally
the stochastic properties can be estimated from the residuals

R̂e = Σ22,

K̂ = Σ12Σ
−1
22 ,

where

(
Σ11 Σ12

Σ21 Σ22

)
= cov (ε) .

IV. 4SID AS MULTI-STEP OPTIMAL PREDICTOR

This section recalls, that optimality criterion of 4SID
is a minimization of multi-step predictions error based on
input/output data. And that the optimal solution leads to the
oblique projection used as a corner stone of unified 4SID
algorithm [6].



A. Multi-step predictor

Assume the state space model is known and at time
i, a system statexi and a sequence of future inputs
{ui, ui+1, . . . , ui+h−1} are also known. The output predic-
tions for 0 to h − 1 steps ahead can be estimated as (the
innovations are replaced by their mean valueE [ek] = 0)




ŷi

...
ŷi+h−1


 = Γhxi + Hd

h




ui

...
ui+h−1


 .

The output predictions forj subsequent initial states can be
written in a compact form using Hankel matrices

Ŷf = ΓhXf + Hd
hUf , (8)

where every column of̂Yf represents a sequence of linear
output predictions based on the initial state and a sequence
of inputs from the corresponding columns ofXf and Uf .
The statesXf , unknown in the process of identification, can
be estimated from the past dataWp as [6]

X̂f =
(
AhΓ†

i (∆d
h − AhΓ†

iH
d
i )

) (
Yp

Up

)
= L′

wWp.

Using the estimated states, the predictor (9) becomes

Ỹf = LwWp + Hd
hUf , (9)

where Ỹf is the output linear estimate ofYf using a finite
available input/output data set.

B. Multi-step predictions optimization

Consider the optimal multi-step predictions on a given set
of input/output data. That is to find the parameter matrices
Lw and Hd

h of (9) to optimally predict the outputs. The
quality of the predictions will be measured by a Frobenius
norm of prediction errors

min
Lw,Hd

h

∥∥∥Yf − Ỹf

∥∥∥
F

= min
Lw,Hd

h

∥∥∥∥Yf −
(
Lw Hd

h

) (
Wp

Uf

)∥∥∥∥
F

.

(10)
DenotingD = ( WT

p UT
f )T and assuming a persistent

excitation, the optimalLw andHd
h can be obtained as

(
Lw Hd

h

)
= YfD

T
(
DDT

)−1
.

Using the previous result, the estimated zero-input state
responseLwWp can be written as

LwWp = YfD
T
[(
DDT

)−1
](

Ir×r

0hm×r

)
Wp, r = i(l+m),

which is the expression for the oblique projection

LwWp = Yf /
Uf

Wp,

showing the equivalency between the oblique projection
in 4SID and an optimal multi-step predictor parameters
estimation.

Oi = ΓiX̂f = Yf /
Uf

Wp = LwWp.

C. Enforcing causality and parameters uniqueness

The parameter matrixHd
h obtained from the oblique

projection (7) may not have the block Toeplitz structure with
zeros above the main diagonal according to (3), which leads
to predictor non-causality. A solution was proposed in [2].
To enforce the causality and the parameters uniqueness it
applies a formula for the vectorization of matrix product to
(9)

vec(Yf ) =
(
( WT

p UT
f ) ⊗ I

)
vec(( Lw Hd

h ))

and uses the fact, that it is possible to findN that

vec
(
( Lw Hd

h )
)

= N

(
ℓw

g

)
,

where

ℓw = vec (Lw) , g = vec
(
( g0 . . . gh−1 )

)
.

A set of equations equivalent to (9) with enforcedHd
h

structure is then

vec(Yf )︸ ︷︷ ︸
y

=
(
( WT

p UT
f ) ⊗ I

)
N

︸ ︷︷ ︸
Z

(
ℓw

g

)

︸ ︷︷ ︸
θ

. (11)

V. I NCORPORATING PRIOR INFORMAION

A natural tool for working with prior information is
Bayesian framework [7]. It allows to combine prior infor-
mation with information from the experimental data.

In order to use Bayesian inference, there have to be the
prior probability density function (p.d.f.) of parametersθ and
the likelihood functionl(θ|y) of parameters conditioned by
the experimental datay.

The prior information has to be transformed into the prior
p.d.f. of parameters. Assuming a normal distribution it will
be described as

pprior(θ) = N(θ̂0, P0)

and real-world prior information will be transformed intôθ0

andP0 by a covariance matrix shaping.
The likelihood functionl(θ|y) is determined by the re-

arranged multi-step predictor model (11), with a simple
structure

Zθ = y + e, e ∼ N(0, R).

The posterior p.d.f ofθ can be found from Bayesian rule

ppost(θ) ∝ l(θ|y)pprior(θ).

For our chosenpprior(θ) andl(θ|y) it leads to the linear mean
square error estimate (LMS)

θ̂ = θ0 + P0Z
T

(
ZP0Z

T + R
)−1

(y − Zθ0) ,

Pθ = P0 − P0Z
T

(
ZPoZ

T + R
)−1

ZP0.



A. Covariance matrix shaping

To describe prior information bŷθ0 and P0, there is an
instrument usually denoted as a covariance matrix shaping
[8]. The idea is to reduce the uncertainty of the parameters
in the directions with well known prior information.

Assume that there is strong prior information on the
parameters in the directionr. The corresponding covariance
matrixP should have small eigenvalueσ1 ≪ 1 in r direction
and large other eigenvaluesσ0 ≫ 1

P = σ1
rrT

rT r
+ σ0

(
I −

rrT

rT r

)
.

The following sections show some examples ofr determi-
nation for some different types of prior information. The
covariance matricesPi describing different prior information
are combined to one covariance P as

P−1 =
∑

i

P−1
i .

B. Known static gain

Assume a known static gainK from thep-th input to the
q-th outputu(p) → y(q)

K = f(θ) =

h−1∑

i=0

gi(q, p) = const. (12)

This affine parameters constraint can be represented by any
θ0 satisfying (12) such as

θ0 =
(

ℓT
w | gT

)T
= K

h ( 0 | wT . . . wT

︸ ︷︷ ︸
h times

)
T

,

(13)
wherew ∈ Rml

w(k) =

{
1 . . . k = p + (q − 1)m,
0 . . . otherwise

and P0 with small eigenvalue in the direction off(θ)
gradient

r = ∇f(θ) = ( 0 | wT . . . wT

︸ ︷︷ ︸
h times

)
T

, (14)

and large other eigenvalues. This ensures, that the exper-
imental data will change the parameter values freely in
the directions perpendicular tor and will have only small
influence to the static gain (depending on the ratio ofσ0/σ1).

The concept can be used to any prior information describ-
able as an affine combination of parameters

f(θ) =
∑

k(i)θ(i) = c

or generalized to a nonlinear function for a good prior
estimate ofθ0.

C. Known ratio between static gains

Assume that the particular gain values for two inputs
(u(p1) → y(q) and u(p2) → y(q)) are unknown, but their
relative ratio is well known (arises in practical applications)

K = f(θ) =

h−1∑
i=0

gi(q, p1)

h−1∑
i=0

gi(q, p2)

= const. (15)

This constraint can be represented byθ0 given by (13)
satisfying (15) withw as

w(k) =





K . . . k = p1 + (q − 1)m,
1 . . . k = p2 + (q − 1)m,
0 . . . otherwise

and P0 with small eigenvalue in the direction off(θ)
gradient (14), which for the chosen values ofθ0 simplifies
to

r = ∇f(θ) = ( 01×2hi | vT . . . vT

︸ ︷︷ ︸
h times

)
T

,

where

v(k) =





1 . . . k = p1 + (q − 1)m,
−K . . . k = p2 + (q − 1)m,
0 . . . otherwise.

D. Ensuring smoothness of step response

One of the natural request to the identified impulse or
step response is the smoothness. It means to suppress the
fitting of high-frequency disturbances. The smoothness will
be shown for SISO system. The idea is that the smooth
impulse response has small second order differences

∆2gi = gi+2 − 2gi+1 + gi → 0.

The differences can be written as



1
−2 1
1 −2 1

.. .
. . .

. . .
1 −2 1




g = Dg → 0.

Covariance matrixP0 should be chosen so that cov{Dg} is
sufficiently small

cov{Dg} = DPgD
T ≈ σ2

hI, σh → 0,

giving P0 as

P0 =

(
σ0I2hi×2hi 0

0 σ2
hD−1D−T

)
,

whereσ2
h is the tuning parameter enforcing the smoothness

for small values. The smooth initial estimate ofθ0 can be
obtained from the impulse response of the first order model
or simply asθ0 = 0.
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Fig. 1. Step responses of the models identified by 4SID with prior information (n=2), Process Identification (numerical PEM on 2xP1D structure), N4SID
(n=2) and PEM on ARMAX model (2221).

VI. STATE SPACE MODEL REALIZATION WITH PRIOR

INFORMATION

Estimating the state space model parameters from the
impulse response sequence is traditionally done by classical
Ho & Kalman realization theory [9]. However, LMS gives
an estimate of the impulse responseĜ = {ĝ0, . . . , ĝh−1}
and itscovariance matrixPG (containing the non-diagonal
values). The information contained in the covariance matrix
is important for a proper state realization and must be
used in the realization algorithm in order topreserve the
supplied prior informationand to respect the experimental
data quality.

First consider the non-diagonal values ofPG to be zero.
The solution is similar to Ho and Kalman realization. Con-
struct a Hankel matrix from the impulse responses

T =




ĝ1 ĝ2 . . . ĝp

ĝ2 ĝ3 . . .
...

...
...

. ..
...

ĝp · · · · · · ĝh−1




.

Then instead of usual lower rank approximation by SVD, the
Weighted Lower Rank-n Approximation (WLRA) has to be
used

T ′ = argmin
T ′

rank(T ′) = n

‖W. ∗ (T − T ′)‖F , (16)

where .∗ is an element-wise multiplication andW are the
weights for each impulse response element fromPG

W =




PG(1, 1)−1 PG(2, 2)−1 . . . PG(p, p)−1

PG(2, 2)−1 PG(3, 3)−1 . . .
...

...
...

. ..
...

PG(p, p)−1 · · · · · · PG(h−1, h−1)−1




.

The (16) can be solved by the algorithm described in [10].
ObtainingT ′ as a weighted rank-n approximation ofT , the

rest of Ho & Kalman realization algorithm can be used to get
the state space model parametersA′,B′,C ′,D′. Using Matlab
like notation

T ′ = UΣV T ,

Γ = U(:, 1 : n)Σ(1 : n, 1 : n)1/2,

∆ = Σ(1 : n, 1 : n)1/2V (1 : n, :)T ,

A′ = Γ(1 : end − l, :)\Γ(l + 1 : end, :),

B′ = ∆(1 : m, 1 : n), C ′ = Γ(1 : l, 1 : n), D′ = ĝ0.

To incorporate the non-diagonal covariance elements the
realization problem can be formulated in the sense of con-
strained maximum likelihood as

min
A,B,C,D

(
Ĝ − G

)T

P−1
G

(
Ĝ − G

)
, (17)

where

G =
(

D CB CAB . . . CAN−2B
)
.

This optimization is nonlinear and the numerical solution is
likely to converge to the local extreme. Practical experience
is that when started from the solutionA′,B′,C ′,D′ given by
scalar WLRA, the global extreme is almost always reached
and the state space model parametersA,B,C,D are found.

VII. A LGORITHM BRIEF SUMMARY

The following steps briefly summarize the steps of pro-
posed algorithm.

1) Transform available prior information to the initial es-
timates ofθ0 andP0. Several types of prior information
can be mixed together.

2) Compute the posterior parameter estimatesθ̂, Pθ from
(12).

3) Using WLRA and Ho & Kalman realization find the
first model parameter estimateA′, B′, C ′, D′.

4) Re-optimizeA′, B′, C ′, D′ by (17) to get the state
space model parametersA, B, C, D.



VIII. P RACTICAL APPLICATION

The algorithm was applied to the experimental data from
the oil firing steam boiler with the rated effective power of
100 MW. The goal was to identify a model relating the fuel
flow and the steam demand to the boiler pressure. This is
known identification problem [11]. Both inputs are typically
strongly collinear, because technological limitations donot
allow independent excitation of each input. Several prior
information were used:

• Known relative gain between fuel flow→ drum pressure
and steam demand→ drum pressure. The value was
obtained from the steady state boiler operation data by
total least squares (Figure 2).

• Strictly dynamic characterg(0) = (0 0).
• Step responses smoothness.

The model identified by 4SID with prior information gives
the best model fit and is the only one to correspond with
known prior information (Figure 1).
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Fig. 2. Estimating the fuel flow to steam flow ratio by total least squares.

IX. CONCLUSION

The proposed algorithm incorporates prior information
into subspace methods. It helps to improve the identification
results in the practical applications, where prior information
is often available and the experimental data may not be
optimal. Moreover the algorithm allows for the recursifi-
cation, because the parametersθ have fixed size and new
measurements only append rows to the regressorZ.
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