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Identification of the Deterministic Part of 
MIMO State Space Models given in Innovations 

Form from Input-Output Data* 

M I C H E L  V E R H A E G E N I  

The problem of  Linear Multivariable State Space model identification from 
input-output data can under the presence of  process- and measurement 
noise be solved in a non-iterative way when incorporating instrumental 
variables constructed from both input and output sequences in the recently 
developed class o f  multivariable output-error state space model class of  
subspace model identification schemes. 
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Abstract--In this paper we describe two algorithms to 
identify a linear, time-invariant, finite dimensional state 
space model from input-output data. The system to be 
identified is assumed to be excited by a measurable input and 
an unknown process tloise and the measurements are 
disturbed by unknown measurement noise. Both noise 
sequences are discrete zero-mean white noise, The first 
algorithm gives consistent estimates only for the case where 
the input also is zero-mean white noise, while the same result 
is obtained with the second algorithm without this constraint. 
For the special case where the input signal is discrete 
zero-mean white noise, it is explicitly shown that this second 
algorithm is a special case of the recently developed 
Multivariable Output-Error State Space (MOESP) class of 
algorithms based on instrumental variables. The usefulness 
of the presented schemes is highlighted in a realistic 
simulation study. 

I. INTRODUCTION 

The identification of  mult iple-input,  multiple- 
output  ( M I M O )  linear t ime-invariant  state space 
models from i n p u t - o u t p u t  measurements  is a 
problem of central  impor tance  in system 
analysis, design and control .  In general  terms,  it 
can be viewed as the problem of finding a 
mapping between the available i n p u t - o u t p u t  
data sequences and unknown paramete r s  in a 
user-defined class of  models ,  e.g. state space 
models.  
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A particular class of  solutions,  discussed in 
Ljung (1987) or  S6ders t r6m and Stoica (1989), 
tackle versions of  this general  problem in a 
direct way by using iterative opt imizat ion 
schemes. The major  drawbacks  of  this direct 
approach are the difficulty of  model  class 
selection, the difficulty of  parametr izat ion of  a 
M I M O  state space model ,  and the possibility of  
parameter  divergence and local minima in the 
numerical opt imizat ion.  

An  indirect approach  is the subspace model  
identification (SMI) approach  (Verhaegen  and 
Depre t te re ,  1991). Here  the intermediate  key 
step is the approximat ion  of  a s t ructured 
subspace f rom spaces defined by Hankel  
matrices const ructed from the i npu t -ou tpu t  
data. For  example in the MOESP family of  
algorithms (Verhaegen ,  1993a), this s t ructured 
subspace is the extended observabil i ty matrix. 
The structure of  this subspace then allows us to 
approximate  certain parts of  the state space 
representat ion describing the i n p u t - o u t p u t  tran- 
sfer of  the given system. 

In (Verhaegen  and Dewilde,  1992a), a very 
general identification problem was formulated  
and in (Verhaegen ,  1993a) a realistic version of  
this problem was solved. The generali ty of  this 
problem s temmed from the fact that the errors,  
which were assumed to be summed at the 
output ,  could have an arbitrary statistical colour.  
In this paper ,  a more  restrictive class of  
per turbat ions (at the output)  is considered.  
Namely,  we assume that the finite dimensional  
linear t ime-invariant ( F D L T I )  system, shown in 
Fig. 1, is given by a state space model  in an 



62 M. VERHAEGEN 

Input 

Generalor 

F" -'1 

Unknown 
,,k ] FDLTI I 

System 

FiG. I. Block schematic view of a realistic system open-loop 
identification set-up. 

innovation form (Ljung, 1987). Thus the 
sequences {uk} and {wk} act as a joint input 
sequence to a linear system given in a standard 
state space form. The difference between the 
sequences {uk} and {wk} is that uk is generated 
and therefore precisely known, while wk is an 
unknown white noise sequence. Both sequences 
are assumed to be statistically independent.  

For this class of systems, we treat the 
following identification problem. 

- -Given  the input-output  sequences {uk} and 
{Yk} and assuming that the additive 
perturbation vk shown in Fig. 1 is also a 
zero-mean white noise sequence, which is 
statistically independent from the input uk, 
then the task is to find a consistent estimate 
of the FDLTI state space model that models 
the (deterministic) transfer between the 
input uk and the output y~.. 

Different solutions have been proposed to this 
problem in the SMI context. First we have the 
work of Larimore (1990) on canonical variate 
analysis. This work is a continuation of the 
pioneering activities initiated by Akaike (1975) 
and treats the problem mainly in a statistical 
setting. Second we have the work of Van 
Overschee (Overschee and De Moor, 1992). 
Although the conceptual nature of these two 
approaches is similar, the derivation of the 
solution in O~,erschee and De Moor (1992) is 
now based purely on standard linear algebra. 

In this paper we treat the above identification 
problem in the MOESP framework, initiated in 
Verhaegen (1990), but later extended in the 
series of papers by Verhaegen (1993a), and 
Verhaegen and Dewilde (1992a, b). The basis of 
deriving solutions in the MOESP framework is 
again linear algebra. The main differences 
between the presented solution and those 
mentioned in the previous paragraph are 
two-fold. First, conceptually, the key subspace in 
our approach is the extended observability 
matrix instead of the state sequence, which is 
defined as an intersection between past and 
future input-output  data Hankel matrices. The 
second main difference is algorithmical. The 

solution presented in Larimore (1990) is based 
on the canonical correlation analysis, while that 
in Overschee and De Moor  (1992) calculates the 
required state sequence from an explicit 
projection of the future output data Hankel 
matrix onto the compound matrix of past and 
future input data Hankel matrix and past output 
data Hankel matrix. The schemes derived in this 
paper preserve the main characteristics of the 
MOESP class of algorithms. These are, first, the 
compression of a compound matrix of input and 
output Hankel matrices into a lower triangular 
matrix by means of orthogonai transformations. 
The latter need not to be stored explicitly. 
Second, the column space of specific submatrices 
of the resulting lower triangular factor ap- 
proximates the column space of the extended 
observability matrix in a consistent way. This 
common nature of the algorithms deviced will 
contribute to their being understood and to the 
simplification of their implementation. 

Although the model class treated in the above 
identification problem is not of the output-error  
class, it will be shown in this paper that the 
solution presented is another  variant of the 
ordinary MOESP scheme extended by means of 
instrumental variables (Verhaegen, 1993a). 

The paper is organized as follows. In Section 2 
some basic notation, the model and data 
representation used throughout the paper, is 
described. The approximation of ,he column 
space of the extended observabiEty matrix is 
then treated in Section 3. In particular we 
analyze the consistency of the proposed ap- 
proximations in this section. These results are 
then used in Section 4 to deriv ~ two identifica- 
tion schemes that allow us to solve the above 
identification problem in a consistent way. The 
relationship of one of the derived schemes with 
the ordinary MOESP scheme extended by in- 
strumental variables is highlighted in Section 5 
and Section 6 illustrates the usefulness of the 
presented solution by means of one realistic 
simulation study. Finally, we present some 
concluding remarks in Section 7. 

2. MODEL DESCRIPTION AND NOTATIONAL 
PRELIMINARIES 

2.1. Some basic notations 
In this section, we define some notation 

frequently used in this paper. 

• Matrix partitioning: an initial method of 
indicating the partitioning of a matrix or a 
vector is illustrated by the following 
example. 

Example 1. Let A e R  (m+e)×N, m<-N, 4>-0, 
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then the following representation of A: 

m N - m  

m (AI, ] A , ,  
A = e \ A z ,  A z : )  

indicates the partitioning of A into respectively 
A ~ e R  ...... , A i z e R  m×cN-'~, A , . ~ R  ~x'' and 
A22 E R ex(N-m). 

A second method of indicating the partitioning 
is consistent with the notation used in the 
MATLAB package (Moler et al., 1987). 

• The rank of a matrix: the rank of a matrix 
A, defined, for example, in Golub and Van 
Loan (1989), is denoted by p(A). 

• The RQ factorization: the RQ factorization 
of a matrix A • R  .... u is a factorization of 
this matrix into a lower triangular matrix 
R • R  ''×N and a square orthogonal matrix 
Q • R N×N, such that: 

A =RQ. 

• The quadruple (AT, Br, Cr, D): defines a 
quadruple of system matrices that are equal 
up to a similarity transformation T to the 
quadruple of system matrices (A, B, C, D), 
that is: 

(A T, B T, C T, D)= (TAT  -~, TN, CT- ' ,  D). 

• l~: this denotes the identity matrix of order  
t ° ' 

2.2. The innovations form of the state space 
description 

The FDLTI system in Fig. 1 is assumed to be 
represented by: 

xk+l =Axk + Buk + Fwk, (I) 
Yk = Cx~ + Duk + Gwk + vk, (2) 

where x k • R " ,  u k • R " " ,  y~., v k • R t  and 
wk eR'" : .  The unknown system matrices 
(A, B, C, D) and (F, G) have appropriate 
dimensions. The process noise wk and the 
measurement noise vk are zero-mean white noise 
sequences, statistically independent of the input 
uk. They satisfy: 

for k = j  (3) 

for k :/: j. = 0  

where E[.] represents the mathematical expecta- 
tion operator.  

There is a whole class of systems of the form 
(1-3) that have an output with the same second 
order statistics (Anderson and Moore,  1979). 
Strictly speaking, the innovations form in such a 

class has the following form (Ljung, 1987, p. 87): 

xk+~ = Axk + Buk + Kek 

Yk = Cxk + Duk + ek, 

where K is the Kalman gain and ek the 
innovation. In this paper, we assume the systems 
to be identified to be modelled by equations 
(1-3).  

For such systems, it is assumed that the pair 
(A, C) is observable and the pair (A, (B FQ~-)) is 
controllable. Further,  throughout this paper we 
assume the system to be asymptotically stable, 
the input sequence Uk to be known exactly and 
the sequence Yk to be the measured output 
sequence of the FDLTI  system. 

2.3. Data representation 
We will use the ergodic-algebraic framework, 

such as proposed in Verhaegen and Dewilde 
(1992a), to analyze the occurring stochastic 
processes. Thus, we assume the signals in the 
identification problem to be (finite segments of) 
realizations of ergodic-stochastic processes. 
That is, for N---, ~ there are ergodic-stochastic 
processes uj e R "  and vk • R ~ such that: 

(UjUj+I"''UN+j-I) and (VkVk+l'''VN+k--I) 

(4) 
are realizations of uj and vk, respectively and the 
following (or similar) expression(s) holds: 

= etuj. q. (5) 
i=l 

We adopt the notation, in bold, to represent the 
stochastic process. An alternative way of 
expressing the above limit is: 

- -  U j + i - - l l ) k + i - -  I + ON(e) = E [Nv~ ,  (6) Ni=l 
where ON(e) is a bounded matrix of appropriate 
dimensions of norm e which vanishes for N---~ oo. 

In the derivation of the identification schemes 
in this paper, the organization of the data in 
structured matrices plays a crucial role. Three 
types of structured matrices are used. First, the 
available data sequences uk, Yk and process noise 
and measurement noise are collected in Hankel 
matrices. For example, for the input sequence 
uk, we define the Hankel matrix Uj..~.N as: 

/dj /'/j+l "'" " UI+N-I I 
Uj.s.N = //j+ I Uj+2 Uj+N . 

,,Uj+x- I /dj+s /dj+N+s-2 

Similarly, we can construct the Hankel 
matrices Yi.,.N, Wj..,.N and Vj.,.N. Second, we 
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have the Toeplitz matrices H~. and E~. defined 
from the system matrices (A, B, C, D) and 
(F, G), respectively as: 

D 

CB 

H~ = CAB 

CA,-2B 

G 

CF 

E~ = CAF 

CAS-:F 

0 

D 0 

CB D 

0 

G 0 

CF G 

" ' "  0 

• " " 0 

0 
• • • -* 

° " ° D 

• • • 0 

° • • 0 

0 

• • • G 

Finally, the state sequence (xixi+t . .  "x/+N_~) 
gives rise to the matrix Xj.N and the extended 
observability matrix Fs is defined as: 

CA 
I s - - - - -  • 

S - - I  

From the state space model representation 
(1-2), the derivation of the following algebraic 
relationship between these three types of 
structured matrices is straightforward: 

Y/.s.N=['sXi.N+ HsU/.s.N+ E~WLs.N+ V/.s.N . (7) 

Throughout this paper, we often treat 
zero-mean white noise sequences• A formal 
definition is given next. 

Definition 1. A sequence uk e R "  is a zero-mean 
white noise sequence, if it has mean zero and if 
it satisfies the following condition: 

E[ukuj 7] = a~,l,~ for k = ]  

= 0 for k :/=j• (8) 

Finally, in this paper, we assume that the 
input signal uk is chosen such that (i) all 
controllable modes of the pair (A, B) have been 
excited and (ii) p(Uj.z,.N)= 2srnl. Such an input 
is referred to as a sufficiently persistently exciting 
input. More precise statements on the necessary 
order of persistency of excitation can be made• 
Such statements depend on the nature of the 
input signal used and the order of the system. 
However, since these precise statements will 
follow from a similar analysis such as made in 
Verhaegen and Dewilde (1992a) for the class of 
SMI schemes treated in that paper, and since 
most of the signals used in an identification 
context are sufficiently persistently exciting, we 

refrain from making such an analysis in this 
paper• 

3. A P P R O X I M A T I N G  T H E  E X T E N D E D  
O B S E R V A B I L I T Y  M A T R I X  F~ 

In Verhaegen and Dewilde (1992a) and 
Verhaegen (1993a), it is shown that useful 
information about the extended observability 
matrix F, can be derived from a simple RQ 
factorization of a compound matrix constructed 
from the Hankel matrices Ui..~.N and Yj..~.N. Here, 
we first consider the following RQ factorization: 

u,.... ] ) 
= 

Y,,,,N ] ~R3~ R3'~ R3~ 
K+,..,.,,,, \R~ R,~ R,~ R~ 

le, \ ×Io | 
/ Q ~ : .  (9) 

This relationship is again purely algebraic. 
The relevance of some matrices in the R factor 

in equation (9) is revealed in Theorem 1. In the 
proof of this theorem, we make use of the 
following lemmas. 

Lemma 1. Let the input uk to the system (1-2) 
be discrete zero-mean white noise, and let the 
RQ factorization in equation (9) be given, then: 

• 1 
=o.  

Proof. See Appendix A. 1. 

The white noise property of the process noise 
wk and measurement noise v, gives rise to the 
following two lemmas. 

Lemma 2. Let the process noise wk of the 
system (1-2) be discrete zero-mean white noise, 
and let it be independent of the initial state x, ,  
then: 

E[x~w]] = 0 for j - k  ~0 .  

Proof. A proof of this lemma is given in 
Verhaegen and Dewilde (1992a) (Lemma 2). 

Lemma 3. Let the process noise wk and the 
measurement noise ok of the system (1-2) be 
discrete zero-mean white noise, statistically 
independent of the input uj for all k, j and of the 
initial state xo, let the input u/ be sufficiently 
persistently exciting, and let the RQ factoriza- 
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tion in equation (9) be given, then: 

and 

1 N T  Lm = o  

1 
lira -- , -  V,+t.,.N(QN) T = O. 
N--® VN 

Proof• See Appendix A.2. 

Remark 1. The iemma also holds when the two 
block matrices UI.,.N and U,+t.,.N in equation (8) 
are interchanged. [] 

We can now state the first theorem of the 
paper based on these three lemmas. 

Thoerem 1. Let the process noise wk and the 
measurement noise vk of the system (1-2) be 
discrete zero-mean white noise,  independent  of  
the input u~ for all k, ] and of  the initial state x0, 
let the input uk to the system (1 -2 )  be discrete 
zero-mean white noise,  and let the R Q  
factorization in equation (9) be givep, then: 

• 1 Y, [[.DN~T lim® :~)~ ,+t. , .N,~,, 

1 NT = l im®:~ - l~ r , x ,+ , ,u (Q,  ) ,  (10) 

• 1 Y, [ I , )N~ T Nli__m= ~ • + '.,. N,~,: 3, 

• 1 F X {I')N~T (11) =lNimoo" ~ s s + I . N ' ~ 3 ] "  

Proof. See Appendix A.3. 

Using the representation in equation (6) and 
the RQ factorization in equation (9), the limits 
in equations (10) and (11) can alternatively be 
denoted as: 

R N X N T = F, ,+, .#(Q,)  + ON(e), (12) 
N _ _  N T R43 - -  r,X,+,•N(Q3) + ON(e). (13) 

Let the SVD of [R N R4 N] be given as: 

n tC$--n 
[n~ R~I= es(U. I U.O 

n g s - n  

0 '~( V," '~ (14) x(S0" I & / , (v .~)T,  ' 

then the column space of U. approximates that 
of F,. Let T be a non-singular n x n matrix, then 
this approximation can be denoted by: 

r.,=U.T. (15) 

Theorem 1 is only valid for the case where the 
input is zero-mean discrete white noise. For an 

arbitrary (persistently exciting) input signal, a 
biased estimate will result. In an experimental 
analysis, see Section 6.1, we observed that also 
for small sized data batches, i.e. small N, the 
obtained estimates are biased even when the 
input was taken as a short "segment of a 
realization of a white noise sequence. 

To overcome these deficiencies, we consider a 
second RQ factorization in the next Theorem. 

let the input uk to the system (1-2) 
sufficiently persistently exciting and let 
following RQ factorization be given: 

Theorem 2. Let the process noise wk and the 
measurement noise vk of the system (1-2) be 
discrete zero-mean white noise, independent of 
the input uj for all k, j and of the initial state x0, 

be 
the 

IR , U,.,.NI=|R~; R~" 
v,.,.N ] ' R3 " 

r.+,,.,N. \R~' R~' R~' R~,' 
07\ 

× 

Of')' 
QT" then: 

1 lim ~ N' w 
N--** VN Y,+t.,•N(Q2 ) 

(16) 

1 
= lim ~ I',X.,+ ,.N(QN') r, (17) 

V/'V 

1 N' T ) 
1 = lim ~ N' T N_~VNr, .X ,+, .N(Q3 ) . (18) 

Proof. See Appendix A.4. 
As a consequence of Theorem 2, let the SVD 

of [R~' N' R43] be given as: 

n ¢ s - n  
[n~' R u'] = ees(U,, I U,,,..) 

n g s - n  

(s, I 0 ] ( ( v ' ) r ' ~  (19) \o', s, :~(vk')': 
then the column space of U'. approximates that 
of F, in a consistent way. 

4. APPROXIMATING THE QUADRUPLE 
(AT, BT, CT, D) 

4.1. Approximating the pair (AT, CT) 
Theorems 1 and 2 of the previous section 

provide a consistent estimate of the column 
space of F,. When this column space is exactly 
known, we can calculate, as in Verhaegen and 
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Dewilde (1992a), the matrix Ar  and Cr. To see 
this, let equality hold in equation (15), then by 
the special structure of Is, the matrix Ar  and Cr 
satisfy (Verhaegen and Dewilde, 1992a): 

U,(1 : t ' ( s -1 ) ,  : ) A r = U , ( e + l : e s ,  :), 

and 

Cr = U,(l :  C :), (21) 

when N is finite, we use the approximations of 
the column space as obtained by the SVDs in 
equation (14) or in equation (19), to find 
approximations for Ar  and Cr. In this case, 
equation (20) and (21) are not satisfied exactly, 
and in order to find a solution we can solve 
equation (20), for example, in least squares 
sense. However, due to the consistency of 
calculating Is, the estimates of A r and Cr 
obtained in this way, will be consistent. 

4.2. Approximating the pair ( BT, D) 
In finding approximates for the pair (Br, D) 

under the conditions specified in Theorem 1. we 
have a complementary theorem. 

Theorem 3. Let the conditions of Theorem 1 
hold, then: 

1 1 
lim Y,..,..N(Q~) r = lim ~ H.,.(R~), (22) 
N ~  VN N---= V N  

a n d  

1 1 
lim Y,.+ N r /! ,..,..N(Q2 ) = m I'!JR~2). (23) 

Proof. See Appendix A.5. 
From this Theorem, we can find an ap- 

proximation of the Toeplitz matrix H~. in 
equation (7) as follows: from equations (22) and 
(23) and the RQ factorization in equation (9), 
we derive: 

[R3~ R~]=H, . [R~ R~] + ON(e). 

Attributable to the white noise property of the 
input uk, the right pseudo-inverse of the matrix 
[R~ R~], denoted by [R~ R2~]*, will always 
exist for sufficiently large N. Hence, the estimate 
of H,, denoted by H,., equals: 

/4~. [R3~ N N = R4z ] [R , ,  R~2]*. (24) 

Under the conditions specified in Theorem 1, 
this estimate/q.~ is consistent• 

Assume next that the matrix H., is known 
exactly and the column space of F.~ is equal to 
that of a known matrix U,, then if we exploit the 
special Toeplitz structure of H,., the pair of 
matrices (Br, D) satisfies the following overde- 

termined set of equations: 

0 / 
U,,(1 : g(s - 1), :) 

o 
U . ( l : e ( s  - 2), :) 

0 

[ \ ={ 1 : &,.m, + l ! 2 m , ) ) .  
\HA e(s-- + + ] :m,si / 

(25) 

Caused by the consistency of the matrix/4., and 
the matrix 0,,  the pair of estimates obtained by 
solving equation (25) in least squares sense are 
also consistent for the conditions of Theorem 1. 

Complementary to Theorem 2, we have the 
following theorem: 

Theorem 4. Let the conditions of Theorem 2 
hold, then: 

• 1 Y tt~N'~r l i m ® ~  ,.~.N,~, , 

/ 1  N 'r  1 ] 
= N-~lim ~ F ~ X , . N ( Q ,  ) + ~ H J R g ' ) ] ,  (26) 

1 N '  T lim ~ Y,.s.N(Qz ) 
N ~  

=i im / 1 N ' r  1 N ' )  N_=~E,.X,.N(Q2 ) + ~ H , ( R = )  , (27) 

and 

1 
lim Y t~N'~r N~ ~ $+l,s,N~,$~g. I J 

/ 1  X N T  1 N' = lim/ r.. ') 

(28) 

Proof. See Appendix A.6. 
From Theorem 4, we can derive the key 

equations to approximate the pair (Br, D). In 
order to see this, we use the RQ factorization in 
equation (16) to denote the equations in 
Theorem 4 as: 

1 N' 
: ~ [ R 3 ,  R~2' R~'] 

1 
,.N(Q, ) ] X,.N(Q2 ) Xs+ N' r = L ~ [ X , . N ( Q T . ) T  N. T 

1 N' + H,~[Rz,  R N' R~'] + ON(e)• (29) 
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When the column spaces of the matrix F~. and its 
orthogonal complement are respectively equal to 
that of U, and U~, then we can multiply 

(U , )  , and obtain: equation (29) on the left by ± r 

(U~)F__._~N[RN' N' R32 R~'] 

1 RN. = (U,~,)rH,.-~[ 2, RN2 R N'] + ON(e). (30) 

Caused by the sufficiently persistence of 
excitation of the input, the matrix 
[R~' Rz~' R~'] has a right pseudo-inverse. 
Multiplying equation (30) on the right by this 
inverse, yields: 

(U,~,)T--~[R N' R3zN' R~. l 

1 N' N" t 

If we denote the left hand side of this equation 
by E eR (e'-") ...... , then this equation can be 
written as: 

=, - T = (U,,) H,. + ON(e). (31) 

Apart from the error term ON(e), which 
vanishes for N---.oo, equation (31) is identical to 
the corresponding equation in the ordinary 
MOESP scheme, from which the pair (BT, D) is 
computed (see the proof of Theorem 5 in 
Verhaegen and Dewilde (1992a)). The calculation 
of the latter quantities is done via the solution of 
the overdetermined set of equations given by 
equation (45) in Verhaegen and Dewilde (1992a) 
with m t substituted for m. 

4.3. Two identification schemes 
From the previous theorems, we can derive 

two schemes that provide consistent estimates 
for the identification problem formulated in the 
introduction. 

Based on Theorems 1 and 3, we formulate a 
first algorithm. 
Algorithm 1. 

Given: 
- -an  estimate of the underlying system order 

n. The latter estimate could be obtained 
from the SVD determined later in Step 3. 
As such, the order n no longer acts as an 
input to the algorithm, but is determined 
during its operation. In practice, the 
estimation of the system order amounts to 
the partitioning of the computed singular 
values into 'larger' and 'smaller' ones. The 
number of 'large' singular values is then an 
estimate of the system order n. It should be 
noted that deciding on which singular values 

are 'large' and which are 'small' may not be 
trivial. For a more elaborate discussion on 
estimating the system order, we refer to 
Verhaegen (1993a), where this topic is 
discussed in more detail for related SMI 
schemes. 

- - a  dimension parameter s, satisfying: 

s > n .  

- - the  input and output sequences: 

[ u l u 2 " " u N + 2 , - t ]  and [yly2. . .yN÷z,_~] 

for N>>s and the input a realization of a 
zero-mean white noise sequence. 

Do the following: 
Step 1. Construct the Hankei matrices Ut..,.N, 
Us+l,s.N, YI.s,N and Y.,+t.s.N. 
Step 2. Do a data compression via an RQ 
factorization as specified in equation (19) 
without accumulating the orthogonal transfor- 
mations required. 
Step 3. Compute the SVD of the matrix 
[RNI R4N3] as given in equation (14). 
Step 4. Solve the set of equations, equations 
(20) and (21) and equation (25) using the 
estimate of the matrix U, computed in Step 3 
and the estimated Toeplitz matrix /q, computed 
in equation (24). 

Remark 2. Even when w k = 0  and v,-~0,  
Algorithm I will only yield consistent estimates. 
This is because this algorithm still relies on 
Lemma 1. [] 

Based on Theorems 2 and 4, we formulate a 
second algorithm. This algorithm is indicated by 
the ordinary MOESP scheme with instrumental 
variables constructed from past input and past 
output measurements, in short the PO scheme, 
for reasons explained in the next section. 
Algorithm 2. The Po scheme. 

Given: 
- - the  same items as in Algorithm 1 are 

required, however, now the input sequence 
only has to be sufficiently persistently 
exciting. 

Do the following: 
Step 1. Construct the Hankel matrices U~..,.N, 
Us+l.s,N, Yh.,'.N and Y,.+I..,..N. 
Step 2. Do a data compression via an RQ 
factorization as specified in equation (16) again 
without accumulating the orthogonal transfor- 
mations required. 
Step 3. Compute the SVD of the matrix 

N.  
R43] as given in equation (19). 

Step 4. Solve the set of equations equations (20) 
and (21) and equation (45) of Verhaegen and 
Dewiide (1992a) using the estimate of the matrix 

AUTO 30:1-F 
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U', and U2' defined in Step 3 and the estimated 
matrix E computed in equation (31). 

Remark 3. This algorithm gives exact result for 
finite length data sequences when w , - 0  and 
v, =0.  I-I 

Remark 4. Experimental experience with the 
schemes derived in Verhaegen and Dewilde 
(1992a), Verhaegen and Dewilde (1992b) and 
Verhaegen (1993a) and the vo algorithm, has 
shown that the construction of the overdeter- 
mined set of equations in equation (45) of 
Verhaegen and Dewilde (1992a) is very time 
consuming. However, exploiting the special 
structure of the matrices in the underbraced 
term in equation (45) of Verhaegen and Dewilde 
(1992a) some computational savings can be 
obtained. When doing the matrix multiplication 
in the underbraced term in equation (45) of 
Verhaegen and Dewilde (1992a) straightfor- 
wardly, the number of multiplications is equal 
to: 

S3(2 ( (  + n )  -- s 2 ( n ( t  a + n). 

However, taking into account all the zero block 
matrices and the identity matrix in equation (45) 
of Verhaegen and Dewilde (1992a), the com- 
putational complexity becomes: 

/($3~2F/ -- S2 (FI( ( + FI ) + SfF/2). 

For example, for particular values of s, ( and n 
equal to 20, 2 and 4, respectively, this results in 
a speed-up of more than a factor 3. [] 

In a way similar to that in Theorems 1 and 2, 
it is shown in Verhaegen (1993a) that when the 
input to a deterministic FDLTI system is zero 
mean white noise and its output is perturbed by 
an additive zero-mean stochastic process of 
arbitrary colour which is statistically independent 
of the instrumental variable sequence, then the 
following relationship holds: 

1 N 1 T /  1 N \ - r  
/ i m = ~ L 3 2 =  limN_=-NF,~X,+,WNk~L22) " (33) 

Based on this relationship, an approximation of 
the column space of the extended observability 
matrix F~. can be retrieved from an SVD of the 
matrix L~2. In Verhaegen (1993a), two types of 
instrumental variable matrices WN are 
considered: 

• WE = Ut..,-.N. This scheme was indicated in 
Verhaegen (1993a) as the el, standing for 
Past Input, scheme. 

• WE equal to a reconstruction of the time 
sequence of the state vector of the 
deterministic system. For a discussion on 
how to reconstruct this state sequence, we 
refer to Verhaegen (1993a). This scheme 
was indicated by the RS, standing for 
Reconstructed State, scheme. 

By comparing the RQ factorization in equation 
(32) with that used in Algorithm 2, see equation 
(16), we immediately observe that 

UI .s.N~ 
WE = ( Yl..,.,v/ 

5. THE INSTRUMENTAL VARIABLES OF THE PO 
SCHEME 

The special organization of the RQ factoriza- 
tion in equation (16) makes the PO scheme a 
special variant of the ordinary MOESP scheme 
extended with instrumental variables (Ver- 
haegen, 1993a). 

In order to show this, let us briefly recall the 
basic operation of instrumental variables within 
the MOSEP framework. When an instrumental 
variable sequence has been chosen, we use this 
sequence to construct a (structured) matrix WE. 
This matrix has N columns and a specific number 
of rows, depending on the chosen instrumental 
variable. Next we consider the following RQ 
factorization: 

Y~+,, N /  kL3~ L~  L3N, Q~, /  

and that Algorithm 2 indeed is a special variant 
of the instrumental variable approach proposed 
in Verhaegen (1993a). 

To gain more insight in which part of this 
choice of WN is active, namely that part of WN 
that remains present in limit relationship like 
equation (33), we state our final theorem. 

Theorem 5. Let the process noise Wk and the 
measurement noise Ok of the system (1-2) be 
discrete zero-mean white noise, independent of 
the input u s for all k, j and of the initial state x.,  
let the input u, to the system (1-2) be discrete 
zero-mean white noise, and let the RQ 
factorization in equation (16) be given, then: 

1 - -  y [I")N"~ T 
lira V~ . , . + l . ~ . N ~ : 2  S N~:c 

= lim 1 r 1 R~')  , ~ _ ~ r , x , + . . ~ u , . . , . . ~ ( ~  ~ -7 (34) 
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and 

1 N' T 

1 
= l im  r, yx,+,.s(x~Nrf+ W~.s.NEh 

N ~  

1 N'  - T  
(35) 

Proof. See Appendix A.7. 

From equations (34) and (35), we conclude that 
three parts present in the instrumental variable 
matrix WN are active in retrieving the column 
space of F.~. These are the matrices U~.~..N, X~.N 
and W~.,.s. It is important to note that, contrary 
to the RS scheme, the latter two matrices are 
obtained without the need to reconstruct. 

In analogy with the choice of acronyms for the 
above mentioned instrumental variable exten- 
sions of the ordinary MOESP scheme, Algorithm 2 
should be indicated as the PIPO scheme. 
However,  we prefer the use of the acronym PO, 
since the above three active quantities are 
present in the Past Output  data Hankel matrix 

Y I  . s  , N .  

Using the sensitivity analysis framework set-up 
in Verhaegen (1993a), it is possible to compare 
the numerical sensitivity of the po scheme with 
both the RS and the vl schemes. The conclusion 
of such a sensitivity analysis is that from these 
three instrumental variable approaches, the ao 
scheme will lead to the most accurate ap- 
proximation of the column space of Fs for the 
class of identification problems stated in the 
introduction. 

Since a formal proof of this conclusion can be 
given analogously to the proofs establishing the 
numerical sensitivity of the PI and as scheme, 
given in Verhaegen (1993a), we restrict our- 
selves to sketching an outline of such a proof. 
Let us assume that the conditions in Theorem 5 
hold, then the result of this theorem forms the 
main ingredient. Equations (34) and (35) of this 
theorem show that the singular values of the 
matrix, 

i 

T T T N '  (X,+t.sXI.sF.,. + X,+I.NWI.,.NE R33 

(36) 

are always greater than or equal to the singular 
values of the matrix only containing the 

underbraced Term 1 or 2 of the term in equation 
(36) between square brackets. When only Term 
1 is retained, we obtain the condition present in 
the PI scheme. The other case represents the 
condition in the RS scheme relying on a perfect 
reconstruction of the state quantities of the 
system described by equation (1). 

For finite N it is only possible to get 
approximations of the quantity in equation (36) 
or one of its variants corresponding to the al or 
Rs scheme. However,  if we assume that the 
additive errors to these approximations are of 
the same order  of magnitude in all three cases, 
then the above insight into the singular values 
directly shows, via an application of a basic 
result on the sensitivity analysis of the SVD, see 
e.g. Stewart (1973), that the stated conclusion 
holds. In the simulation study, in Section 6.1, we 
illustrate the assumption used in coming to this 
conclusion. 

A consequence of the previous conclusion is 
that the PO scheme will lead to more accurate 
estimates of the pair [At, Cr]. 

Finally, we mention that in the vo scheme, the 
instrumental variable matrix is not only used in 
the estimation of the column space of F~., as is 
the case with the other two instrumental variable 
approaches. From equation (30) we observe that 
the part of the past output data Hankel matrix 
Y~.,.N corresponding to the submatrices R3~' and 
R3N2 ' is used in the calculation of the pair [Br, D]. 
Caused by this more effective use of the output 
(compared to the case when only using the part 
R~' related to the future data Hankel matrix) a 
better estimation of the pair [Br, D] might be 
expected. 

6. S I M U L A T I O N  S T U D Y  

In this section, we report the results of two 
simulation studies to highlight the usefulness of 
the algorithms presented in this paper. In these 
studies we compare the presented algorithms 
with other members of the MOESP class of 
algorithms. In the first example, a comparison is 
made with the Pt scheme, presented in 
Verhaegen (1993a). The latter scheme yields 
consistent estimates when in Fig. l, wk-= 0 and 
vk is zero-mean but of arbitrary coiour. In the 
second example, the realistic circumstances of an 
aircraft flying through gusty wind are simulated. 
In this example, a comparison is made with the 
as scheme, that yielded in Verhaegen (1993a) 
the most reliable and unbiased results. 

6.1. A simple first-order system 
A first simple example that already gives some 

interesting insights into the performances of the 
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I .(15 - - ~  

1 '  

().~5 

-.-.-.-.- : PO scheme /I 

0.~1 ... . . . . .  : Algorithm I 

10-' 

l0 t 

I 0  o 

xxxx: PO scheme 

o o o o :  PI scheme 

x x 
I t x X X X X I t I x X x X X X I I t l t x X x l t X x X X X X x I t x X l t x l t X  x X X X x  x X X I t  I X  

o 
o o o o o  

~ o ° o °  O o O ° O o o  ° o O °  o o o  o ° O O ° O ° o ° ° o o ° ° O °  °OooO°C 
o 

x 
o x x • x 

1 1 1  ~ i o 1 ~  I l I l ~ l l l l  I I i I 1  l 
o o l  i l l [  l o o - o 0 l 0 o l l O O  [ 

x x  z o Z o  z • o o x l t o  x x o o 
o o ° o ~ o x o oo oO °oo o ° 

o o O o  o o o 
o o 

U I 0 21) 30 40 50 0 20 30 

FiG. 2. Es t ima ted  A mat r ix  by A l g o r i t h m  I, the eo  and  ex (Ihs) and  the two la rges t  s ingu la r  va lues  ca lcu la t ed  
in the eo and 1,t s chemes  (rhs)  for the e x p e r i m e n t  p r e s e n t e d  in Sec t ion  6.1. 

50 

presented algorithms is treated in this 
subsection. 

The true system to be identified is a single 
input, single output (SISO) model given as: 

xk+) = 0.9890Xk + 1.8805Uk -- 0. 1502W~, (37) 

Yk = 0.8725Xk -- 2.0895Uk + 2.5894Wk. (38) 

The input sequence uk and the process noise wk 
are independent zero-mean white noise se- 
quences of unit variance. The length of the 
observed input and output sequences is 200 and 
a Monte-Carlo experiment is conducted whereby 
in each run we generate another  process noise 
sequence wk. A total number  of 50 runs are 
performed,  each run the dimension index s was 
taken equal to six in the different identification 
schemes. The computations are per formed 
within the Matlab package (Moler et al., 1987). 
As a result of this experiment,  we focus on the 
estimation of the transition matrix A. The 
estimates are plotted in the left-hand side (Ihs) 
of Fig. 2. From this figure, we observe that 
Algorithm 1 leads to biased estimates. This 
indicates that the consistency results of Theorem 
1 are not very robust and require a large number  
of samples. With the present example,  more or 
less the same type of unbiased estimates were 
obtained with Algorithm 1 as with the PO scheme 
when N was chosen equal to 1000. The PO 
scheme on the other hand does not suffer from 
this deficiency. These results are compared  with 
those obtained with the PI scheme. Based on this 
comparison, see the Ihs shown in Fig. 2, we 
conclude that both methods discussed in this 
paper yield estimates with a reduced variance of 
a factor ~25. This supports the conclusion stated 
in the previous section. 

In the right-hand side (rhs) of Fig. 2 we plot 
the two largest singular values of the set 
computed by the eo and the el scheme during the 
50 different runs. Since the other  singular values 
in both cases are of the same order  of magnitude 
as the second largest one, for the sake of clarity, 
we do not display those. From these singular 
value plots a number  of things can be observed.  
First, since there is a clear gap between the first 
singular value and the rest, they allow us to 
correctly estimate that the order  is 1. Second, 
this gap is more striking in the set of singular 
values corresponding to the PO scheme, indicated 
by xxxx in Fig. 2, then in those corresponding to 
the Pt scheme, indicated by oooo in Fig. 2. 
Third, we see that the 'small '  singular values are 
of the same order of magnitude in both the PI 
and the eo scheme. This then illustrates the 
assumption made in coming to that conclusion. 

6.2. Identification of  the aircraft dynamics when 
flying through gusty wind 

This example,  which was treated in Verhaegen 
(1993a), is of the class of systems analyzed in this 
paper. Further,  since it was indicated to be a 
critical system in Verhaegen (1993a), we 
reanalyze the example to see what improvements  
may be obtained using the schemes presented in 
this paper. 

The mathematical model. The particular aircr- 
aft analyzed in this experiment  is an F-8 aircraft 
and the numerical data describing its dynamics is 
taken from Elliott (1977). The continuous time 
model that describes the linearized longitudinal 
motion of the aircraft hit by a vertical gusty wind 
at an altitude of 20,000ft,  an airspeed of 
620f t s  -~ and an angle of attack og)=0.078 rad 
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is: 

00 0 

d -0.015 

= ~ 1.01.0 -0.000190 

x + ~_;.11f115~ + 

-4 .8  0 ) 

-14.0 -32.2 

-0.84 0 

0 0 

-4 .8  ) 
-14.0 

-0.84 a~ 

0 

(39) 

Here q is the rate of pitch, u the horizontal 
component of the airspeed, tr the angle of 
attack, 0 the pitch angle, 6, the measured 
elevator deflection angle (deterministic) and trg 
the unmeasurable scaled vertical gust velocity. 
Zero-mean white noise with standard deviation 
equal to 0.05 and 0.2 affect the output 
measurements q and u, respectively. 

In the simulation, use is made of a discrete 
version of the model in equation (39) for a 
discrete period of At---0.05 s and a zero-mean 
white noise sequence with standard deviation 
o~ = 0. 1 for the 15,. 

The vertical gust velocity 0cg is simply taken to 
be zero-mean white noise with standard 
deviation o,,. equal to 0.2. Again we perform a 
similar Monte-Carlo simulation study as in the 
previous experiment and plot the eigenvalues of 
the estimated transition matrix. A total number 
of 100 runs is performed. The dimension 
parameter s is kept equal to 20. The results of 
the RS scheme, displayed in the rhs of our final 
figure, clearly demonstrate that the latter scheme 
produces very sensitive results. Therefore, this 
example may be considered as one that cannot 
be analyzed with the schemes presented in 
Verhaegen (1993a). However, the Ihs of Fig. 3 

shows that the eo scheme yielded unbiased 
estimates with a small(er) variance. Again these 
observations can be supported by inspecting the 
corresponding singular values. For the sake of 
brevity the latter quantities are not presented 
here. 

Finally, we mention that Algorithm 1 yielded 
the same results as the Po scheme. This confirms 
that Theorem 1 holds when the length of the 
data batches is 'large'. 

7. C O N C L U D I N G  R E M A R K S  

In this paper, we have derived two algorithms 
to identify a MIMO state space model from 
perturbed input-output data. The presented 
algorithms share the algorithmic structure of the 
MOESP class of algorithms, recently presented in 
Verhaegen and Dewilde (1992a, b) and Ver- 
haegen (1993a). This is because the main 
algorithmic steps of the algorithms presented in 
this paper, are identical to those of the 
mentioned papers. The relationship with the 
schemes presented in Verhaegen (1993a) based 
on instrumental variables is explicitly outlined in 
this paper for the second new algorithm. The 
latter scheme is indicated by the PO, standing for 
Past Input (instrumental variables). This outline 
leads to the conclusion that the Po scheme allows 
to approximate the key quantity in the MOESP 
class of algorithms, namely the column space of 
the extended observability matrix of the system 
to be identified, more accurately than the 
instrumental variable schemes derived in Ver- 
haegen (1993a). As a consequence, the system 
matrices derived from this quantity are deter- 
mined with greater precision. This conclusion is 
supported in the simulation analysis section. 

As outlined in the identification problem 
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stated in the introduction, we restrict the 
analysis in this paper to the identification of the 
deterministic part of the system model. In 
Overschee and De Moor (1992), the problem of 
identifying the stochastic part is treated also. 
Preliminary results on this subject within the 
framework presented in this paper are reported 
in Verhaegen (1993b). 
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APPENDIX A: PROOFS OF THE LEMMAS AND 
THEOREMS 

A. I. Proof of Lemma 1 
From the white noise property of u k in Definition 1 and the 

representation in equation (6), we conclude that: 

1 T , 
UI.Z,.NU I.zt.N = o~ul2j~,l. , Jl" ON(E ). 

Using the RO factorization in equation (9), the above 
equation is equal to: 

~lRl|(Rzl) 

1 N N , -  R~(RT,)  T ~ (R2 , (R2 , )  + 

(of, i,,,, + ON(e) ON(e) ] 
= \ ON(e) o~L., . .  + ON(e)/ 

Hence, 

1 R~(RN)  , = ON(e) and 1 RN,(RN)T = a~l ..... + ON(e ). 

From the r ight-hand side of  this equat ion, we conclude that 
for sufficiently large N the matr ix  ( I / V N R ~ I )  remains 
invert ible and therefore the left-hand side becomes: 

1 -~  nT, = ON(e) 

which concludes the proof of the lemma. [] 

A.2. Proof of Lemma 3 
The proof of both equations in Lemma 3 is very similar. 

Therefore, we only prove the right-hand side equation. 
Using equation (7) for j  = 1, we find that: 

1 T _ T T 
-~ YI..,-.NW,+ t.,.N -- E, X I .NW,+ I.s.N -I- H~ el ..,'.NW.," + I ..,.N 

(i) (~) 
T T + E~Wi ..,.NW.,+ I.,'.N + VI ..,.NW.~+ I..~.N" 

By [.,emma 2, the term (i) is ON(E ) . At t r ibu tab le  to the 
statistical independency of  u,  and w i for Vk, i, the term (it) is 
also ON(e) and the same is true for the terms ( i i i )  and ( iv)  
caused by the white noise proper ty  o f  w, and v , ,  as specified 
by equat ion (3). Hence, 

1 r 
~1 Y~'' 'NW' + I..,.N = ON(E). (A. 1 ) 

Using the expression for UI..,..N in equat ion (9) and the 
independency of  u k and w i for  Vk, i, we can wri te:  

1 N N T 1 r 
~ I R , i Q ,  W.,+ ,.,.N = ~/ U,..,.NW,+,..,..N = ON(e ). 

Caused ~y the persistency of excitation of the input, the 
matrix n i t  is invertible. Therefore, 

1 N r 
~ Q I  W~+I.,.N = ON(e). (A.2) 

Using this expression, and again the independency of u k and 
w i for Vk, i, stated as: 

1 T _ ~[ Us+I.:t.NW'+I.s.N- ON(E), 

we can similarly derive that: 

1 N r 
Q2 W,+ t.,,.N = ON(e) • (A.3) 

Finally, with the expression for Yi , N given in equation (9), 
the term (I/N)Yt..,.NWr+ n.,.N can be written as: 

1 T _ 1 N 1 N r ~V,.,.NW,÷,~.N--~R,,~e,W,+,.,.N 

1 N l N T 1 N 1 +~R,_~e..W,+,.,.N+~R~.,-~O;W,'+,.~.N 
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Using equations (A.1-A.3),  we obtain: 

1 N 1 N T Q., w,+, . , .N = oN(e).  

Attributable to the white noise property of w,. v~ and the 
independency of u~ and w~. v~ for Vk, i. the matrix R3 N is 
invertible and the result of the lemma has been proved. [] 

A.3. Proof o f  Theorem 1 
Using equation (7) for j = s + 1 and the RQ factorization 

in equation (9), we find that: 

1 N T  1 y , + . , N ( Q ~ , ) r = ~ r , X , + ,  N(Q,) 

l N T  l + H,-~--I~IRN. + E, ~ W,+,.,.N(Q, ) + ~  V,+u,.N(QN) T. 

Caused by the independency of  u k and vi for  Vk.  i, one can 
show, similarly to equation (A.2)  that: 

1 
V,+..,.N(QN) r = ON(e). 

Therefore, by Lemma I and equation (A.2), we obtain 
equation (I0) of the theorem. Again using equation (7) for 
j = s + I and the RQ factorization in equation (9), we find 
that: 

1 1 N T  
v,+ = r . x , + , . N ( e . ,  ) 

1 N T  1 NT + E,~W,+t. . , .N(Q.~) +~V,+u. , .N(Q.~)  . 

By Lemma 3, the second and third term in the rhs of  this 
equation is ON(e). Therefore. also equation (11) is provedl-I  

A.4. Proof of  Theorem 2 
Now using equation (7) for j = s  +1 and the RQ 

factorization in equation (16), we find that: 

1 N ' T  1 - -  Y,+,..,.N(Qz ) = ~ F , X , + . . N ( Q ~ ' )  r 
"V~ _ _  " " 

1 w N ' T  1 + E , ~  .,+...,.N(Q2 ) + ~ V , + , . . , . N ( Q N ' )  T. 

As in the proof of Theorem I, we use the independency of u k 
and w, resp. u, for Vk. i, to show that: 

1 N ' T  
~c~ W,+'..'.N(Q2 ) = ON(e) 

and 

I V, + ,.,.N( QN') T = ON(e) • 

Therefore, we obtain equation 07)  of the theorem without 
making use of Lemma I. When making use of Remark I, the 
proof of equation (18) becomes very similar to the proof of 
equation (11) in Theorem 1. [] 

A.5. Proof o f  Theorem 3 
Using equation (7) for j = 1 and the RQ factorization in 

equation (9), we find that: 

1 NT 1 
)',...N(Q, ) = - - ?  r , x ,  

V N ' - = ~  , 
(0 

,f;~,, N 1 (E.,W,.,.N(QN)T + V.., N(Q~)T). 
+ v,v  H ' R "  + v.~" . " , 

(iii) 

When we substitute u k for wt, in Lemma 2, this Lemma then 
shows that the (i) term in the above equations is ON(e). 
Using the independency of u k and %, v, for Vk, i, one can 
easily show, as in the proof of Lemma 3, see e.g. equation 

(A.2), that: 

and 

I---L w tQN'xT ON(e) 

l 
~ V. N(QN') r = O,(e). 

(ii) term is ON(e) and equation Therefore, the (22) is 
proved. 

By similar arguments, equation (23) can be proved, i--I 

A.6. Proof o f  Theorem 4 
The proof of each relationship in Theorem 4 is very 

similar. Therefore, we only prove equation (26). Using 
equation (7) for j = 1 and the RQ factorization in equation 
(161, we find that: 

__I yL.,.N(QN,)T = ~ N  F,X..N(QT") T + ~ H , .R , , I  N' 

1 N'T +T-~.. (E, WI.,.N(QN') r + VU.,.N(QI ) ). 
VN 

By the independency of  u k and w i, v i for Vk.  i. the (i) term is 
ON(E ) and therefore equation (26) is proved. [] 

A.7. Proof o f  Theorem 5 
We first prove equation (34). We start with equation (7) 

for j = s  + 1. With the RQ factorization given in equation 
(16), we obtain: 

1 N. T RN. T )  I Y,+u.,.N(Q~')T(R~2)r= ~F,X ,+uN(Q2 ( , , 2 )  

1 N' r / 1 R2~,) r ) 

N' r / 1 R~.~ i v , , , N ( e .  + ~  . . . .  

Caused by the independency of u k and w i for Vk, i, the 
underbraced terms are again ON(e). Therefore, 

N'T  1 N . r  
1 Y,+,..,.N(Q'-) ( ~ R " 2 1  

1 N ' r  1 R2~.) r = ~ £ , X , + . . N ( Q 2  ) ( ~  _ +ON(e). 

By Lemma 2, and the RO factorization in equation (16), the 
following holds: 

1 N'T ~ X , . + , . N ( Q ,  ) = O~(e) .  

Hence, 

r 1 
1 ~ ' ~ N " H ! R N g  - - -  r , "  

V'~ "'+''''N''-" ' ~,v~ :-'J - V ~  . . , ,+ , .N  

N ' ,  I R z N . ) r + ( Q N , ) r ( ~ N  N r [(o: , ..,) ]+o.(., 
and the proof of the first part of the Theorem is completed. 
Using equation (7) for j = 1 and the RO factorization in 
equation (16), we obtain: 

Yt..,.N = r,X,.N + tLU,..,.N+ E,W,.,.N+ V,.,.N 
N" N '  N '  N '  N '  N '  = + R33 Q~ • R3tQj +R32Q2 (A.4) 

From equation (29), we deduce: 

1 N'  I N '  1 r,x, N(Q~')T+~n,R. ,  = ~ R . , ,  +ON(e) ~ .  • 

and 

I N I N' 
F,X. N(Q~') r + ~ H,R, ;  = ~ R , ,  + ON(e ). 

V N  . . . . . . . .  
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Inserting these expressions in equation (A.4) yields: 

1 
~ ([-.X I N( I _ (QN')TQN" (QN')TQN') + E,W, ~ N + V,.,.N) 

I N '  N '  =-~R33Q3 + O,v(e)Q~V'+ ON(E)Q N" . (A.5) 

By Lemma 2, we have that: 

1 r I r 
~IXI.NU,+I.,.N= ON(e) and ~IXI.NUI.,.N= ON(e). 

Hence, using the RQ factorization in equation (16) and the 
white noise property of u k, we derive from these two 
equations that: 

and 

I 
V ~  X,.N(QN') r = ON(e) 

l N '  T 
~..X,.N(Q2 ) = ON(e ). 

VN 

Hence, equation (A.5) reduces to: 

1 N" N'  I 
~ R 3 3 Q 3  = ~ ( F , X , . N +  E,.W,..,.N + V,..,.N) 

+ ON(e)Q~'+ ON(e)Q~'. (A.6) 

Next, consider the expression N ' r  N'T (I/N)Y,.+,..,.N(Q.~) (R33) • 
Using equation (7) f o r j  = s  + 1 and equation (A.6),  this can 
be expressed as: 

1 N ' r  N'T I 
~/Y,,  ,..,.N(Q.~ ) (R:~3) = ~  ( r , x , + , . N +  E,.W,+,.,.N 

+ v,+ ,.,.N)(X~.NrY+ WL.NU,+ V~,+ VL.N) + ON(e). 

Using the white noise property of wl, and ok and the 
independency of x k and v i for Vk, i. the rhs simplifies to: 

= [ .  IXs+ I .NXI .NF x + 1 T T 

(i) 

I r T + E,~X,+~.NW~.,.NE, + ON(e). 

By Lemma 2, the (i) term is ON(e ) and hence equation (35) 
is proved. [] 


